Tejaswini Petkar, Marie Andrea Laetitia Huët, Devesh Bekah, Itisha Chummun Phul, Nowsheen Goonoo and Archana Bhaw-Luximon
{"title":"从鲣鱼皮肤废料中提取的胶原蛋白增强了纳米纤维和水凝胶支架的细胞增殖活性、血管化潜力和抗炎性能","authors":"Tejaswini Petkar, Marie Andrea Laetitia Huët, Devesh Bekah, Itisha Chummun Phul, Nowsheen Goonoo and Archana Bhaw-Luximon","doi":"10.1039/D5SU00352K","DOIUrl":null,"url":null,"abstract":"<p >Marine collagen is gaining prominence in tissue engineering as a sustainable biomaterial and a safe alternative to mammalian collagen. Collagen was extracted from skipjack tuna skin waste using the acetic acid extraction method with a yield of 10.02 ± 2.69%. SDS PAGE indicated the presence of α-tropocollagen chains (α1 and α2) with molecular weights of 120–140 kDa, a β dimer at ∼200 kDa, and a γ component trimer at ∼250 kDa. The hydroxyproline content of the extracted collagen (14.42 ± 0.11%) was higher than reported values, indicating better structural integrity and thermostability. The extracted collagen was added to three scaffolds namely a polydioxanone/poly(3-hydroxybutyrate-<em>co</em>-3-hydroxyvalerate) (PDX/PHBV 50/50, 10 wt%) nanofibrous mat, polysucrose methacrylate hydrogel (PSucMA 5 wt%) and cellulose-lignin (Cel-lig 2 wt%) hydrogel. <em>In vitro</em> experiments were performed using RAW 264.7 macrophages to assess inflammatory activity, human dermal fibroblasts (HDFs) to assess proliferative activity and Human Umbilical Vein Endothelial Cells (HUVECs) to assess the vascularization potential of the scaffolds with collagen. The macrophages showed a reduced inflammatory M1 phenotype in the presence of collagen, while HUVECs and HDFs showed enhanced proliferation. Overall, fish skin waste collagen has the potential to enhance the performance and allows the engineering of multitasking scaffolds.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 8","pages":" 3567-3581"},"PeriodicalIF":4.9000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d5su00352k?page=search","citationCount":"0","resultStr":"{\"title\":\"Collagen from skipjack tuna skin waste enhances cellular proliferative activity, vascularization potential and anti-inflammatory properties of nanofibrous and hydrogel scaffolds†\",\"authors\":\"Tejaswini Petkar, Marie Andrea Laetitia Huët, Devesh Bekah, Itisha Chummun Phul, Nowsheen Goonoo and Archana Bhaw-Luximon\",\"doi\":\"10.1039/D5SU00352K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Marine collagen is gaining prominence in tissue engineering as a sustainable biomaterial and a safe alternative to mammalian collagen. Collagen was extracted from skipjack tuna skin waste using the acetic acid extraction method with a yield of 10.02 ± 2.69%. SDS PAGE indicated the presence of α-tropocollagen chains (α1 and α2) with molecular weights of 120–140 kDa, a β dimer at ∼200 kDa, and a γ component trimer at ∼250 kDa. The hydroxyproline content of the extracted collagen (14.42 ± 0.11%) was higher than reported values, indicating better structural integrity and thermostability. The extracted collagen was added to three scaffolds namely a polydioxanone/poly(3-hydroxybutyrate-<em>co</em>-3-hydroxyvalerate) (PDX/PHBV 50/50, 10 wt%) nanofibrous mat, polysucrose methacrylate hydrogel (PSucMA 5 wt%) and cellulose-lignin (Cel-lig 2 wt%) hydrogel. <em>In vitro</em> experiments were performed using RAW 264.7 macrophages to assess inflammatory activity, human dermal fibroblasts (HDFs) to assess proliferative activity and Human Umbilical Vein Endothelial Cells (HUVECs) to assess the vascularization potential of the scaffolds with collagen. The macrophages showed a reduced inflammatory M1 phenotype in the presence of collagen, while HUVECs and HDFs showed enhanced proliferation. Overall, fish skin waste collagen has the potential to enhance the performance and allows the engineering of multitasking scaffolds.</p>\",\"PeriodicalId\":74745,\"journal\":{\"name\":\"RSC sustainability\",\"volume\":\" 8\",\"pages\":\" 3567-3581\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/su/d5su00352k?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/su/d5su00352k\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC sustainability","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/su/d5su00352k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Collagen from skipjack tuna skin waste enhances cellular proliferative activity, vascularization potential and anti-inflammatory properties of nanofibrous and hydrogel scaffolds†
Marine collagen is gaining prominence in tissue engineering as a sustainable biomaterial and a safe alternative to mammalian collagen. Collagen was extracted from skipjack tuna skin waste using the acetic acid extraction method with a yield of 10.02 ± 2.69%. SDS PAGE indicated the presence of α-tropocollagen chains (α1 and α2) with molecular weights of 120–140 kDa, a β dimer at ∼200 kDa, and a γ component trimer at ∼250 kDa. The hydroxyproline content of the extracted collagen (14.42 ± 0.11%) was higher than reported values, indicating better structural integrity and thermostability. The extracted collagen was added to three scaffolds namely a polydioxanone/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PDX/PHBV 50/50, 10 wt%) nanofibrous mat, polysucrose methacrylate hydrogel (PSucMA 5 wt%) and cellulose-lignin (Cel-lig 2 wt%) hydrogel. In vitro experiments were performed using RAW 264.7 macrophages to assess inflammatory activity, human dermal fibroblasts (HDFs) to assess proliferative activity and Human Umbilical Vein Endothelial Cells (HUVECs) to assess the vascularization potential of the scaffolds with collagen. The macrophages showed a reduced inflammatory M1 phenotype in the presence of collagen, while HUVECs and HDFs showed enhanced proliferation. Overall, fish skin waste collagen has the potential to enhance the performance and allows the engineering of multitasking scaffolds.