{"title":"解释质谱中离散离子计数器非线性的通量模型","authors":"Stefaan Pommé and Sergei F. Boulyga","doi":"10.1039/D5JA00085H","DOIUrl":null,"url":null,"abstract":"<p >A mathematical model is presented to calculate the expected throughput rate in a discrete ion counter with imposed non-extending dead time. The count loss mechanism consists of a combined effect of the imposed dead time, interfered with pulse pileup owing to the finite time resolution of the electronic pulses generated in the ion counter. This model may be applicable to mass spectrometers making use of discrete ion counters, thus providing a means to reproduce counting-rate dependency of observed atomic abundance ratios.</p>","PeriodicalId":81,"journal":{"name":"Journal of Analytical Atomic Spectrometry","volume":" 8","pages":" 2073-2082"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ja/d5ja00085h?page=search","citationCount":"0","resultStr":"{\"title\":\"A throughput model explaining non-linearity in discrete ion counters used in mass spectrometry\",\"authors\":\"Stefaan Pommé and Sergei F. Boulyga\",\"doi\":\"10.1039/D5JA00085H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >A mathematical model is presented to calculate the expected throughput rate in a discrete ion counter with imposed non-extending dead time. The count loss mechanism consists of a combined effect of the imposed dead time, interfered with pulse pileup owing to the finite time resolution of the electronic pulses generated in the ion counter. This model may be applicable to mass spectrometers making use of discrete ion counters, thus providing a means to reproduce counting-rate dependency of observed atomic abundance ratios.</p>\",\"PeriodicalId\":81,\"journal\":{\"name\":\"Journal of Analytical Atomic Spectrometry\",\"volume\":\" 8\",\"pages\":\" 2073-2082\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ja/d5ja00085h?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Analytical Atomic Spectrometry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ja/d5ja00085h\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Atomic Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ja/d5ja00085h","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
A throughput model explaining non-linearity in discrete ion counters used in mass spectrometry
A mathematical model is presented to calculate the expected throughput rate in a discrete ion counter with imposed non-extending dead time. The count loss mechanism consists of a combined effect of the imposed dead time, interfered with pulse pileup owing to the finite time resolution of the electronic pulses generated in the ion counter. This model may be applicable to mass spectrometers making use of discrete ion counters, thus providing a means to reproduce counting-rate dependency of observed atomic abundance ratios.