废补铁水热碳化制备纳米Fe3O4磁铁矿

IF 4.9
Ahmed I. Yunus, Samuel A. Darko, Yongsheng Chen and Joe F. Bozeman III
{"title":"废补铁水热碳化制备纳米Fe3O4磁铁矿","authors":"Ahmed I. Yunus, Samuel A. Darko, Yongsheng Chen and Joe F. Bozeman III","doi":"10.1039/D5SU00312A","DOIUrl":null,"url":null,"abstract":"<p >We report a novel, time-dependent synthesis of magnetic magnetite (Fe<small><sub>3</sub></small>O<small><sub>4</sub></small>) and maghemite (Fe<small><sub>2</sub></small>O<small><sub>3</sub></small>) nanoparticles (MNPs) embedded in hydrochar <em>via</em> hydrothermal carbonization (HTC) of expired pharmaceutical waste containing iron-based supplements. This unique circular reuse and waste valorization proposition offers pharmaceutical waste as a sustainable iron-rich feedstock for MNP fabrication. The synthesis was conducted at a fixed temperature of 275 °C with residence times of 6 and 12 h, producing maghemite- and magnetite-dominant phases, respectively. Unlike conventional methods that rely on high temperatures, toxic reagents, or complex protocols, our approach offers a low-cost, sustainable route for functional nanomaterial production. The structural, morphological, and surface chemical characteristics of the MNP hydrochar were elucidated using XRD, SEM, and FTIR analyses. To evaluate environmental sustainability, we performed a comparative life cycle assessment (LCA) against co-precipitation and pyrolysis/gasification methods. The HTC route exhibited the lowest environmental impact across multiple TRACI 2.1 impact categories. Finally, the adsorption performance of the fabricated MNP hydrochar was assessed in a model methylene blue (MB) wastewater system, demonstrating &gt;95% removal efficiency and an adsorption capacity of 1.38 mg g<small><sup>−1</sup></small>. These findings present a viable pathway for integrating waste valorization, green nanomaterial synthesis, and sustainable wastewater treatment.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 8","pages":" 3530-3547"},"PeriodicalIF":4.9000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d5su00312a?page=search","citationCount":"0","resultStr":"{\"title\":\"Facile fabrication of magnetite (Fe3O4) nanoparticles by hydrothermal carbonization of waste iron supplements†\",\"authors\":\"Ahmed I. Yunus, Samuel A. Darko, Yongsheng Chen and Joe F. Bozeman III\",\"doi\":\"10.1039/D5SU00312A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >We report a novel, time-dependent synthesis of magnetic magnetite (Fe<small><sub>3</sub></small>O<small><sub>4</sub></small>) and maghemite (Fe<small><sub>2</sub></small>O<small><sub>3</sub></small>) nanoparticles (MNPs) embedded in hydrochar <em>via</em> hydrothermal carbonization (HTC) of expired pharmaceutical waste containing iron-based supplements. This unique circular reuse and waste valorization proposition offers pharmaceutical waste as a sustainable iron-rich feedstock for MNP fabrication. The synthesis was conducted at a fixed temperature of 275 °C with residence times of 6 and 12 h, producing maghemite- and magnetite-dominant phases, respectively. Unlike conventional methods that rely on high temperatures, toxic reagents, or complex protocols, our approach offers a low-cost, sustainable route for functional nanomaterial production. The structural, morphological, and surface chemical characteristics of the MNP hydrochar were elucidated using XRD, SEM, and FTIR analyses. To evaluate environmental sustainability, we performed a comparative life cycle assessment (LCA) against co-precipitation and pyrolysis/gasification methods. The HTC route exhibited the lowest environmental impact across multiple TRACI 2.1 impact categories. Finally, the adsorption performance of the fabricated MNP hydrochar was assessed in a model methylene blue (MB) wastewater system, demonstrating &gt;95% removal efficiency and an adsorption capacity of 1.38 mg g<small><sup>−1</sup></small>. These findings present a viable pathway for integrating waste valorization, green nanomaterial synthesis, and sustainable wastewater treatment.</p>\",\"PeriodicalId\":74745,\"journal\":{\"name\":\"RSC sustainability\",\"volume\":\" 8\",\"pages\":\" 3530-3547\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/su/d5su00312a?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/su/d5su00312a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC sustainability","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/su/d5su00312a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们报道了一种新颖的、随时间变化的磁性磁铁矿(Fe3O4)和磁铁矿(Fe2O3)纳米颗粒(MNPs)的合成方法,该方法通过水热碳化(HTC)将含有铁基补充剂的过期制药废物嵌入碳氢化合物中。这种独特的循环再利用和废物增值主张为MNP制造提供了一种可持续的富铁原料。在275℃的固定温度下,停留时间分别为6和12 h,合成了以磁铁矿和磁铁矿为主的相。与依赖高温、有毒试剂或复杂方案的传统方法不同,我们的方法为功能性纳米材料的生产提供了低成本、可持续的途径。利用XRD、SEM和FTIR等分析手段对MNP烃类的结构、形态和表面化学特征进行了表征。为了评估环境可持续性,我们对共沉淀和热解/气化方法进行了比较生命周期评估(LCA)。在多个TRACI 2.1影响类别中,HTC路线的环境影响最低。最后,在模拟亚甲基蓝(MB)废水系统中对制备的MNP水合物的吸附性能进行了评估,其去除效率为95%,吸附量为1.38 mg g−1。这些发现为整合废物增值、绿色纳米材料合成和可持续废水处理提供了一条可行的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Facile fabrication of magnetite (Fe3O4) nanoparticles by hydrothermal carbonization of waste iron supplements†

Facile fabrication of magnetite (Fe3O4) nanoparticles by hydrothermal carbonization of waste iron supplements†

We report a novel, time-dependent synthesis of magnetic magnetite (Fe3O4) and maghemite (Fe2O3) nanoparticles (MNPs) embedded in hydrochar via hydrothermal carbonization (HTC) of expired pharmaceutical waste containing iron-based supplements. This unique circular reuse and waste valorization proposition offers pharmaceutical waste as a sustainable iron-rich feedstock for MNP fabrication. The synthesis was conducted at a fixed temperature of 275 °C with residence times of 6 and 12 h, producing maghemite- and magnetite-dominant phases, respectively. Unlike conventional methods that rely on high temperatures, toxic reagents, or complex protocols, our approach offers a low-cost, sustainable route for functional nanomaterial production. The structural, morphological, and surface chemical characteristics of the MNP hydrochar were elucidated using XRD, SEM, and FTIR analyses. To evaluate environmental sustainability, we performed a comparative life cycle assessment (LCA) against co-precipitation and pyrolysis/gasification methods. The HTC route exhibited the lowest environmental impact across multiple TRACI 2.1 impact categories. Finally, the adsorption performance of the fabricated MNP hydrochar was assessed in a model methylene blue (MB) wastewater system, demonstrating >95% removal efficiency and an adsorption capacity of 1.38 mg g−1. These findings present a viable pathway for integrating waste valorization, green nanomaterial synthesis, and sustainable wastewater treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信