Da-Ao Nie , Jiangkun Yu , Wenshan Huang , Gui-Hua Li , Xu-Ying He , Jie-Hua Xu
{"title":"小胶质细胞在神经退行性疾病中的作用","authors":"Da-Ao Nie , Jiangkun Yu , Wenshan Huang , Gui-Hua Li , Xu-Ying He , Jie-Hua Xu","doi":"10.1016/j.molimm.2025.07.014","DOIUrl":null,"url":null,"abstract":"<div><div>As resident immune surveillance cells within the central nervous system (CNS), microglia exert pivotal biological functions in maintaining CNS homeostasis through dynamic modulation of their proliferative capacity, chemotactic motility, efferocytosis activity, and biphasic secretory mechanisms involving both neuromodulatory factors and pro-inflammatory mediators. These specialized macrophages not only serve as the first line of defense in innate immunity but also orchestrate the regulation of adaptive immune responses; whose functional status directly governs both the physiological integrity of neural circuits and the progression of pathological outcomes. Notably, in neurodegenerative disease models, microglial functional states exhibit pronounced heterogeneity and are tightly regulated by microenvironmental cues. Upon encountering sustained hyperactivation or functional impairment, these cells precipitate a cascade of deleterious events within the neurovascular unit. Building upon these pathophysiological mechanisms, targeted modulation of microglial polarization equilibrium has emerged as a pivotal research focus in developing innovative neuroprotective therapeutic strategies. This review systematically integrates empirical evidence derived from cutting-edge methodologies—including molecular imaging, single-cell multi-omics profiling, and conditional genetic ablation—to mechanistically dissect the dual regulatory roles of microglia in orchestrating neural homeostatic maintenance and driving pathological progression in neurological disorders.</div></div>","PeriodicalId":18938,"journal":{"name":"Molecular immunology","volume":"185 ","pages":"Pages 127-135"},"PeriodicalIF":3.0000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of microglia in neurodegenerative diseases\",\"authors\":\"Da-Ao Nie , Jiangkun Yu , Wenshan Huang , Gui-Hua Li , Xu-Ying He , Jie-Hua Xu\",\"doi\":\"10.1016/j.molimm.2025.07.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As resident immune surveillance cells within the central nervous system (CNS), microglia exert pivotal biological functions in maintaining CNS homeostasis through dynamic modulation of their proliferative capacity, chemotactic motility, efferocytosis activity, and biphasic secretory mechanisms involving both neuromodulatory factors and pro-inflammatory mediators. These specialized macrophages not only serve as the first line of defense in innate immunity but also orchestrate the regulation of adaptive immune responses; whose functional status directly governs both the physiological integrity of neural circuits and the progression of pathological outcomes. Notably, in neurodegenerative disease models, microglial functional states exhibit pronounced heterogeneity and are tightly regulated by microenvironmental cues. Upon encountering sustained hyperactivation or functional impairment, these cells precipitate a cascade of deleterious events within the neurovascular unit. Building upon these pathophysiological mechanisms, targeted modulation of microglial polarization equilibrium has emerged as a pivotal research focus in developing innovative neuroprotective therapeutic strategies. This review systematically integrates empirical evidence derived from cutting-edge methodologies—including molecular imaging, single-cell multi-omics profiling, and conditional genetic ablation—to mechanistically dissect the dual regulatory roles of microglia in orchestrating neural homeostatic maintenance and driving pathological progression in neurological disorders.</div></div>\",\"PeriodicalId\":18938,\"journal\":{\"name\":\"Molecular immunology\",\"volume\":\"185 \",\"pages\":\"Pages 127-135\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0161589025001853\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular immunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0161589025001853","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The role of microglia in neurodegenerative diseases
As resident immune surveillance cells within the central nervous system (CNS), microglia exert pivotal biological functions in maintaining CNS homeostasis through dynamic modulation of their proliferative capacity, chemotactic motility, efferocytosis activity, and biphasic secretory mechanisms involving both neuromodulatory factors and pro-inflammatory mediators. These specialized macrophages not only serve as the first line of defense in innate immunity but also orchestrate the regulation of adaptive immune responses; whose functional status directly governs both the physiological integrity of neural circuits and the progression of pathological outcomes. Notably, in neurodegenerative disease models, microglial functional states exhibit pronounced heterogeneity and are tightly regulated by microenvironmental cues. Upon encountering sustained hyperactivation or functional impairment, these cells precipitate a cascade of deleterious events within the neurovascular unit. Building upon these pathophysiological mechanisms, targeted modulation of microglial polarization equilibrium has emerged as a pivotal research focus in developing innovative neuroprotective therapeutic strategies. This review systematically integrates empirical evidence derived from cutting-edge methodologies—including molecular imaging, single-cell multi-omics profiling, and conditional genetic ablation—to mechanistically dissect the dual regulatory roles of microglia in orchestrating neural homeostatic maintenance and driving pathological progression in neurological disorders.
期刊介绍:
Molecular Immunology publishes original articles, reviews and commentaries on all areas of immunology, with a particular focus on description of cellular, biochemical or genetic mechanisms underlying immunological phenomena. Studies on all model organisms, from invertebrates to humans, are suitable. Examples include, but are not restricted to:
Infection, autoimmunity, transplantation, immunodeficiencies, inflammation and tumor immunology
Mechanisms of induction, regulation and termination of innate and adaptive immunity
Intercellular communication, cooperation and regulation
Intracellular mechanisms of immunity (endocytosis, protein trafficking, pathogen recognition, antigen presentation, etc)
Mechanisms of action of the cells and molecules of the immune system
Structural analysis
Development of the immune system
Comparative immunology and evolution of the immune system
"Omics" studies and bioinformatics
Vaccines, biotechnology and therapeutic manipulation of the immune system (therapeutic antibodies, cytokines, cellular therapies, etc)
Technical developments.