Shuning Bai , Meihua Fan , Min Wu , Xiaolong Sui , Yibo Song , Yunlong Jiang , Huisheng Meng , Yulin Liu , Xiangying Wang , Xianjun Hao , Yi Li , Jianping Hong , Jie Zhang
{"title":"轮作和有机肥可维持复垦煤矿土壤中携带cbbl的co2固定细菌的多样性和活性","authors":"Shuning Bai , Meihua Fan , Min Wu , Xiaolong Sui , Yibo Song , Yunlong Jiang , Huisheng Meng , Yulin Liu , Xiangying Wang , Xianjun Hao , Yi Li , Jianping Hong , Jie Zhang","doi":"10.1016/j.ejsobi.2025.103759","DOIUrl":null,"url":null,"abstract":"<div><div>CO<sub>2</sub>-fixing bacteria are an important factor in restoring soil health in coal mining areas. The impact of crop rotation and fertilization on CO<sub>2</sub>-fixing bacteria in reclaimed mining soils remains unclear. To narrow this knowledge gap, in this study, maize (<em>Zea mays</em> L.) monoculture (M) and maize-soybean (<em>Glycine max</em>) rotation (R) cropping systems were set up in a coal-mining reclamation area with four fertilization treatments in each, namely, CK (without fertilization), inorganic fertilizer (F), organic fertilizer (O), and combined organic and inorganic fertilizer (OF). The abundance, diversity, community composition and RubisCO activity of CO<sub>2</sub>-fixing bacteria in topsoil under those treatments were investigated respectively using quantitative PCR, high-throughput sequencing based on the <em>cbbL</em> gene [that encodes ribulose-1,5-biphosphate carboxylase/oxygenase (RubisCO)] and enzyme-linked immunosorbent assay (ELISA). The results showed that R_O significantly increased easily oxidized organic carbon (EOC), total nitrogen (TN), and available nitrogen (AN) (<em>P</em> < 0.05). It also significantly increased the biomass of CO<sub>2</sub>-fixing bacteria (<em>P</em> < 0.05) and altered the CO<sub>2</sub>-fixing bacterial community. The CO<sub>2</sub>-fixing bacteria in R_OF, R_O and M_O exhibited comparable community structures and harbored a greater co-occurrence network complexity than other treatments. Several CO<sub>2</sub>-fixing bacteria associated with nitrogen cycling, such as <em>Devosia</em>, <em>Nitrobacter</em>, Hyphomicrobiales and <em>Nitrosospira</em>, were significantly enriched under the maize-soybean rotation system (<em>P</em> < 0.05). This study implied that crop rotation and organic fertilizer application could synergistically foster soil quality restoration in coal mining area by elevating soil nutrients and maintaining biomass, diversity and community structure of <em>cbbL</em>-carrying CO<sub>2</sub>-fixing bacteria, establishing a theoretical foundation for optimizing carbon sequestration strategies in post-mining ecological rehabilitation.</div></div>","PeriodicalId":12057,"journal":{"name":"European Journal of Soil Biology","volume":"126 ","pages":"Article 103759"},"PeriodicalIF":3.3000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crop rotation and organic fertilizer maintains diversity and activity of cbbL-carrying CO2-fixing bacteria in reclaimed coal mining soils\",\"authors\":\"Shuning Bai , Meihua Fan , Min Wu , Xiaolong Sui , Yibo Song , Yunlong Jiang , Huisheng Meng , Yulin Liu , Xiangying Wang , Xianjun Hao , Yi Li , Jianping Hong , Jie Zhang\",\"doi\":\"10.1016/j.ejsobi.2025.103759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>CO<sub>2</sub>-fixing bacteria are an important factor in restoring soil health in coal mining areas. The impact of crop rotation and fertilization on CO<sub>2</sub>-fixing bacteria in reclaimed mining soils remains unclear. To narrow this knowledge gap, in this study, maize (<em>Zea mays</em> L.) monoculture (M) and maize-soybean (<em>Glycine max</em>) rotation (R) cropping systems were set up in a coal-mining reclamation area with four fertilization treatments in each, namely, CK (without fertilization), inorganic fertilizer (F), organic fertilizer (O), and combined organic and inorganic fertilizer (OF). The abundance, diversity, community composition and RubisCO activity of CO<sub>2</sub>-fixing bacteria in topsoil under those treatments were investigated respectively using quantitative PCR, high-throughput sequencing based on the <em>cbbL</em> gene [that encodes ribulose-1,5-biphosphate carboxylase/oxygenase (RubisCO)] and enzyme-linked immunosorbent assay (ELISA). The results showed that R_O significantly increased easily oxidized organic carbon (EOC), total nitrogen (TN), and available nitrogen (AN) (<em>P</em> < 0.05). It also significantly increased the biomass of CO<sub>2</sub>-fixing bacteria (<em>P</em> < 0.05) and altered the CO<sub>2</sub>-fixing bacterial community. The CO<sub>2</sub>-fixing bacteria in R_OF, R_O and M_O exhibited comparable community structures and harbored a greater co-occurrence network complexity than other treatments. Several CO<sub>2</sub>-fixing bacteria associated with nitrogen cycling, such as <em>Devosia</em>, <em>Nitrobacter</em>, Hyphomicrobiales and <em>Nitrosospira</em>, were significantly enriched under the maize-soybean rotation system (<em>P</em> < 0.05). This study implied that crop rotation and organic fertilizer application could synergistically foster soil quality restoration in coal mining area by elevating soil nutrients and maintaining biomass, diversity and community structure of <em>cbbL</em>-carrying CO<sub>2</sub>-fixing bacteria, establishing a theoretical foundation for optimizing carbon sequestration strategies in post-mining ecological rehabilitation.</div></div>\",\"PeriodicalId\":12057,\"journal\":{\"name\":\"European Journal of Soil Biology\",\"volume\":\"126 \",\"pages\":\"Article 103759\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Soil Biology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1164556325000512\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Soil Biology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1164556325000512","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Crop rotation and organic fertilizer maintains diversity and activity of cbbL-carrying CO2-fixing bacteria in reclaimed coal mining soils
CO2-fixing bacteria are an important factor in restoring soil health in coal mining areas. The impact of crop rotation and fertilization on CO2-fixing bacteria in reclaimed mining soils remains unclear. To narrow this knowledge gap, in this study, maize (Zea mays L.) monoculture (M) and maize-soybean (Glycine max) rotation (R) cropping systems were set up in a coal-mining reclamation area with four fertilization treatments in each, namely, CK (without fertilization), inorganic fertilizer (F), organic fertilizer (O), and combined organic and inorganic fertilizer (OF). The abundance, diversity, community composition and RubisCO activity of CO2-fixing bacteria in topsoil under those treatments were investigated respectively using quantitative PCR, high-throughput sequencing based on the cbbL gene [that encodes ribulose-1,5-biphosphate carboxylase/oxygenase (RubisCO)] and enzyme-linked immunosorbent assay (ELISA). The results showed that R_O significantly increased easily oxidized organic carbon (EOC), total nitrogen (TN), and available nitrogen (AN) (P < 0.05). It also significantly increased the biomass of CO2-fixing bacteria (P < 0.05) and altered the CO2-fixing bacterial community. The CO2-fixing bacteria in R_OF, R_O and M_O exhibited comparable community structures and harbored a greater co-occurrence network complexity than other treatments. Several CO2-fixing bacteria associated with nitrogen cycling, such as Devosia, Nitrobacter, Hyphomicrobiales and Nitrosospira, were significantly enriched under the maize-soybean rotation system (P < 0.05). This study implied that crop rotation and organic fertilizer application could synergistically foster soil quality restoration in coal mining area by elevating soil nutrients and maintaining biomass, diversity and community structure of cbbL-carrying CO2-fixing bacteria, establishing a theoretical foundation for optimizing carbon sequestration strategies in post-mining ecological rehabilitation.
期刊介绍:
The European Journal of Soil Biology covers all aspects of soil biology which deal with microbial and faunal ecology and activity in soils, as well as natural ecosystems or biomes connected to ecological interests: biodiversity, biological conservation, adaptation, impact of global changes on soil biodiversity and ecosystem functioning and effects and fate of pollutants as influenced by soil organisms. Different levels in ecosystem structure are taken into account: individuals, populations, communities and ecosystems themselves. At each level, different disciplinary approaches are welcomed: molecular biology, genetics, ecophysiology, ecology, biogeography and landscape ecology.