{"title":"基于约束空间路径的机器人姿态控制框架及其实现","authors":"Yalun Wen, Prabhakar R. Pagilla","doi":"10.1016/j.mechatronics.2025.103390","DOIUrl":null,"url":null,"abstract":"<div><div>This paper develops a novel pose control framework for robot manipulators traversing a given spatial curve with constant speed. The key to this framework is the use of a Rotation Minimizing Frame (RMF) for path generation and control, enhancing motion stability for paths with significant curvature and inflection points, and reducing kinematic twist. Using the governing equations based on the RMF, we first develop the reference velocity and acceleration along the path that is consistent with the RMF. Employing tools from differential geometry, we derive a path following position control law by projecting the robot translation states onto the RMF. From an analytical description of the relative orientation error kinematics, we derive a stabilizing orientation controller by utilizing the Modified Rodrigues Parameters to avoid the unwinding problem. The proposed framework is applicable to both torque-controlled and velocity-controlled robots, and we provide results from real-time experiments on both types of robots to verify the effectiveness and advantages of the proposed approach.</div></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"110 ","pages":"Article 103390"},"PeriodicalIF":3.1000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel pose control framework and its implementation for robot manipulators following constrained spatial paths\",\"authors\":\"Yalun Wen, Prabhakar R. Pagilla\",\"doi\":\"10.1016/j.mechatronics.2025.103390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper develops a novel pose control framework for robot manipulators traversing a given spatial curve with constant speed. The key to this framework is the use of a Rotation Minimizing Frame (RMF) for path generation and control, enhancing motion stability for paths with significant curvature and inflection points, and reducing kinematic twist. Using the governing equations based on the RMF, we first develop the reference velocity and acceleration along the path that is consistent with the RMF. Employing tools from differential geometry, we derive a path following position control law by projecting the robot translation states onto the RMF. From an analytical description of the relative orientation error kinematics, we derive a stabilizing orientation controller by utilizing the Modified Rodrigues Parameters to avoid the unwinding problem. The proposed framework is applicable to both torque-controlled and velocity-controlled robots, and we provide results from real-time experiments on both types of robots to verify the effectiveness and advantages of the proposed approach.</div></div>\",\"PeriodicalId\":49842,\"journal\":{\"name\":\"Mechatronics\",\"volume\":\"110 \",\"pages\":\"Article 103390\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechatronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0957415825000996\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957415825000996","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
A novel pose control framework and its implementation for robot manipulators following constrained spatial paths
This paper develops a novel pose control framework for robot manipulators traversing a given spatial curve with constant speed. The key to this framework is the use of a Rotation Minimizing Frame (RMF) for path generation and control, enhancing motion stability for paths with significant curvature and inflection points, and reducing kinematic twist. Using the governing equations based on the RMF, we first develop the reference velocity and acceleration along the path that is consistent with the RMF. Employing tools from differential geometry, we derive a path following position control law by projecting the robot translation states onto the RMF. From an analytical description of the relative orientation error kinematics, we derive a stabilizing orientation controller by utilizing the Modified Rodrigues Parameters to avoid the unwinding problem. The proposed framework is applicable to both torque-controlled and velocity-controlled robots, and we provide results from real-time experiments on both types of robots to verify the effectiveness and advantages of the proposed approach.
期刊介绍:
Mechatronics is the synergistic combination of precision mechanical engineering, electronic control and systems thinking in the design of products and manufacturing processes. It relates to the design of systems, devices and products aimed at achieving an optimal balance between basic mechanical structure and its overall control. The purpose of this journal is to provide rapid publication of topical papers featuring practical developments in mechatronics. It will cover a wide range of application areas including consumer product design, instrumentation, manufacturing methods, computer integration and process and device control, and will attract a readership from across the industrial and academic research spectrum. Particular importance will be attached to aspects of innovation in mechatronics design philosophy which illustrate the benefits obtainable by an a priori integration of functionality with embedded microprocessor control. A major item will be the design of machines, devices and systems possessing a degree of computer based intelligence. The journal seeks to publish research progress in this field with an emphasis on the applied rather than the theoretical. It will also serve the dual role of bringing greater recognition to this important area of engineering.