Qingchen Lv , Fei Hong , Zhanyuan Sun , Haiyan Shen , Hongyi Lu , Ye Jin , Liming Mao , Lei Song
{"title":"在新生儿缺氧缺血性脑损伤中,OPA1调节NLRP3炎性体激活和小胶质细胞介导的神经炎症","authors":"Qingchen Lv , Fei Hong , Zhanyuan Sun , Haiyan Shen , Hongyi Lu , Ye Jin , Liming Mao , Lei Song","doi":"10.1016/j.jneuroim.2025.578701","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Hypoxic-ischemic brain injury (HIBD) represents a primary cause of neurological impairment in neonates and is frequently associated with persistent cognitive and motor deficits. This study explores the regulatory function of optic atrophy 1 (OPA1) in modulating NLRP3 inflammasome-mediated neuroinflammation in a neonatal rat model of hypoxic-ischemic encephalopathy (HIE), and evaluates the impact of the OPA1 inhibitor MYLS22 on neuroinflammatory responses and cerebral injury.</div></div><div><h3>Methods</h3><div>Neonatal rats were subjected to HIBD. Temporal expression patterns of OPA1 and inflammasome-associated proteins were assessed using Western blotting, immunofluorescence, and histopathological analyses. The influence of MYLS22 treatment on neuroinflammatory markers, brain pathology, and cognitive outcomes was also investigated.</div></div><div><h3>Result</h3><div>HIBD led to a marked reduction in long-form OPA1 (L-OPA1) expression and a concomitant increase in short-form OPA1 (S-OPA1). Activation of the NLRP3 inflammasome peaked between 24 and 48 h post-injury. Treatment with MYLS22 suppressed OPA1 expression in a dose-dependent manner, further enhancing inflammasome activation and aggravating brain injury, characterized by enlarged infarct volumes, increased edema, and impaired cognitive performance. Conversely, in vitro overexpression of L-OPA1 attenuated inflammasome activation and reduced microglial inflammation following ischemia/reperfusion insult, indicating a neuroprotective effect.</div></div><div><h3>Conclusion</h3><div>These findings demonstrate a pivotal role for OPA1 in controlling neuroinflammation and mitochondrial integrity in the context of HIE. Modulation of OPA1 expression or targeting inflammasome signaling may represent promising therapeutic strategies to alleviate neuroinflammatory injury and improve neurological outcomes in neonates.</div></div>","PeriodicalId":16671,"journal":{"name":"Journal of neuroimmunology","volume":"407 ","pages":"Article 578701"},"PeriodicalIF":2.5000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OPA1 modulates NLRP3 inflammasome activation and microglial-mediated neuroinflammation in neonatal hypoxic-ischemic brain injury\",\"authors\":\"Qingchen Lv , Fei Hong , Zhanyuan Sun , Haiyan Shen , Hongyi Lu , Ye Jin , Liming Mao , Lei Song\",\"doi\":\"10.1016/j.jneuroim.2025.578701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Hypoxic-ischemic brain injury (HIBD) represents a primary cause of neurological impairment in neonates and is frequently associated with persistent cognitive and motor deficits. This study explores the regulatory function of optic atrophy 1 (OPA1) in modulating NLRP3 inflammasome-mediated neuroinflammation in a neonatal rat model of hypoxic-ischemic encephalopathy (HIE), and evaluates the impact of the OPA1 inhibitor MYLS22 on neuroinflammatory responses and cerebral injury.</div></div><div><h3>Methods</h3><div>Neonatal rats were subjected to HIBD. Temporal expression patterns of OPA1 and inflammasome-associated proteins were assessed using Western blotting, immunofluorescence, and histopathological analyses. The influence of MYLS22 treatment on neuroinflammatory markers, brain pathology, and cognitive outcomes was also investigated.</div></div><div><h3>Result</h3><div>HIBD led to a marked reduction in long-form OPA1 (L-OPA1) expression and a concomitant increase in short-form OPA1 (S-OPA1). Activation of the NLRP3 inflammasome peaked between 24 and 48 h post-injury. Treatment with MYLS22 suppressed OPA1 expression in a dose-dependent manner, further enhancing inflammasome activation and aggravating brain injury, characterized by enlarged infarct volumes, increased edema, and impaired cognitive performance. Conversely, in vitro overexpression of L-OPA1 attenuated inflammasome activation and reduced microglial inflammation following ischemia/reperfusion insult, indicating a neuroprotective effect.</div></div><div><h3>Conclusion</h3><div>These findings demonstrate a pivotal role for OPA1 in controlling neuroinflammation and mitochondrial integrity in the context of HIE. Modulation of OPA1 expression or targeting inflammasome signaling may represent promising therapeutic strategies to alleviate neuroinflammatory injury and improve neurological outcomes in neonates.</div></div>\",\"PeriodicalId\":16671,\"journal\":{\"name\":\"Journal of neuroimmunology\",\"volume\":\"407 \",\"pages\":\"Article 578701\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neuroimmunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165572825001821\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neuroimmunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165572825001821","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
OPA1 modulates NLRP3 inflammasome activation and microglial-mediated neuroinflammation in neonatal hypoxic-ischemic brain injury
Background
Hypoxic-ischemic brain injury (HIBD) represents a primary cause of neurological impairment in neonates and is frequently associated with persistent cognitive and motor deficits. This study explores the regulatory function of optic atrophy 1 (OPA1) in modulating NLRP3 inflammasome-mediated neuroinflammation in a neonatal rat model of hypoxic-ischemic encephalopathy (HIE), and evaluates the impact of the OPA1 inhibitor MYLS22 on neuroinflammatory responses and cerebral injury.
Methods
Neonatal rats were subjected to HIBD. Temporal expression patterns of OPA1 and inflammasome-associated proteins were assessed using Western blotting, immunofluorescence, and histopathological analyses. The influence of MYLS22 treatment on neuroinflammatory markers, brain pathology, and cognitive outcomes was also investigated.
Result
HIBD led to a marked reduction in long-form OPA1 (L-OPA1) expression and a concomitant increase in short-form OPA1 (S-OPA1). Activation of the NLRP3 inflammasome peaked between 24 and 48 h post-injury. Treatment with MYLS22 suppressed OPA1 expression in a dose-dependent manner, further enhancing inflammasome activation and aggravating brain injury, characterized by enlarged infarct volumes, increased edema, and impaired cognitive performance. Conversely, in vitro overexpression of L-OPA1 attenuated inflammasome activation and reduced microglial inflammation following ischemia/reperfusion insult, indicating a neuroprotective effect.
Conclusion
These findings demonstrate a pivotal role for OPA1 in controlling neuroinflammation and mitochondrial integrity in the context of HIE. Modulation of OPA1 expression or targeting inflammasome signaling may represent promising therapeutic strategies to alleviate neuroinflammatory injury and improve neurological outcomes in neonates.
期刊介绍:
The Journal of Neuroimmunology affords a forum for the publication of works applying immunologic methodology to the furtherance of the neurological sciences. Studies on all branches of the neurosciences, particularly fundamental and applied neurobiology, neurology, neuropathology, neurochemistry, neurovirology, neuroendocrinology, neuromuscular research, neuropharmacology and psychology, which involve either immunologic methodology (e.g. immunocytochemistry) or fundamental immunology (e.g. antibody and lymphocyte assays), are considered for publication.