在chcl -尿素深共晶溶剂中电化学脱合金:制备多孔FeCoNiAlMo高熵合金的一种增强析氧活性的策略

IF 2.6 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jiangfei Wang , Weijia Chen , Yijun Wen , Yuhan Peng , Siqi Liu , Shiwei He
{"title":"在chcl -尿素深共晶溶剂中电化学脱合金:制备多孔FeCoNiAlMo高熵合金的一种增强析氧活性的策略","authors":"Jiangfei Wang ,&nbsp;Weijia Chen ,&nbsp;Yijun Wen ,&nbsp;Yuhan Peng ,&nbsp;Siqi Liu ,&nbsp;Shiwei He","doi":"10.1016/j.mlblux.2025.100252","DOIUrl":null,"url":null,"abstract":"<div><div>High-entropy alloys (HEAs), as a new type of multi-element alloy, have become widely studied electrocatalytic materials in recent years due to their excellent catalytic performance. The experimental material used FeCoNiAlMo HEA with equal atomic ratio as the precursor, and three-dimensional nanostructures were formed by dealloying in choline chloride-urea (ChCl-Urea). The results indicate that Fe<sub>20</sub>Co<sub>20</sub>Ni<sub>20</sub>Al<sub>20</sub>Mo<sub>20</sub> HEA is mainly composed of body-centered cubic (BCC) phase and face-centered cubic (FCC) phase, with BCC phase accounting for a larger proportion. Due to the different corrosion resistance of elements and the difference in element content distribution between the two phases, the FCC phase is preferentially corroded, resulting in a three-dimensional porous morphology. This unique structure synergistically reduces the energy barrier during the hydrolysis dissociation process, giving the material a significant advantage in the oxygen evolution reaction (OER) process. At a current density of 10 mA cm<sup>−2</sup>, the overpotential of the treated alloy is as low as 312 mV, which is lower than the commercial RuO<sub>2</sub>-IrO<sub>2</sub>, and it has lower resistance and higher charge transfer efficiency.</div></div>","PeriodicalId":18245,"journal":{"name":"Materials Letters: X","volume":"26 ","pages":"Article 100252"},"PeriodicalIF":2.6000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical dealloying in ChCl-Urea Deep eutectic solvent: A strategy to fabricate porous FeCoNiAlMo high-entropy alloy with enhanced oxygen evolution reaction activity\",\"authors\":\"Jiangfei Wang ,&nbsp;Weijia Chen ,&nbsp;Yijun Wen ,&nbsp;Yuhan Peng ,&nbsp;Siqi Liu ,&nbsp;Shiwei He\",\"doi\":\"10.1016/j.mlblux.2025.100252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>High-entropy alloys (HEAs), as a new type of multi-element alloy, have become widely studied electrocatalytic materials in recent years due to their excellent catalytic performance. The experimental material used FeCoNiAlMo HEA with equal atomic ratio as the precursor, and three-dimensional nanostructures were formed by dealloying in choline chloride-urea (ChCl-Urea). The results indicate that Fe<sub>20</sub>Co<sub>20</sub>Ni<sub>20</sub>Al<sub>20</sub>Mo<sub>20</sub> HEA is mainly composed of body-centered cubic (BCC) phase and face-centered cubic (FCC) phase, with BCC phase accounting for a larger proportion. Due to the different corrosion resistance of elements and the difference in element content distribution between the two phases, the FCC phase is preferentially corroded, resulting in a three-dimensional porous morphology. This unique structure synergistically reduces the energy barrier during the hydrolysis dissociation process, giving the material a significant advantage in the oxygen evolution reaction (OER) process. At a current density of 10 mA cm<sup>−2</sup>, the overpotential of the treated alloy is as low as 312 mV, which is lower than the commercial RuO<sub>2</sub>-IrO<sub>2</sub>, and it has lower resistance and higher charge transfer efficiency.</div></div>\",\"PeriodicalId\":18245,\"journal\":{\"name\":\"Materials Letters: X\",\"volume\":\"26 \",\"pages\":\"Article 100252\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Letters: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590150825000158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590150825000158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

高熵合金(High-entropy alloys, HEAs)作为一种新型的多元素合金,因其优异的催化性能而成为近年来被广泛研究的电催化材料。实验材料以等原子比的FeCoNiAlMo HEA为前驱体,在氯化胆碱-尿素(ChCl-Urea)中进行脱合金处理,形成三维纳米结构。结果表明:Fe20Co20Ni20Al20Mo20 HEA主要由体心立方(BCC)相和面心立方(FCC)相组成,其中BCC相所占比例较大;由于元素的耐蚀性不同以及两相之间元素含量分布的差异,FCC相优先被腐蚀,形成三维多孔形态。这种独特的结构协同降低了水解解离过程中的能垒,使材料在析氧反应(OER)过程中具有显著的优势。在电流密度为10 mA cm−2时,处理后的合金的过电位低至312 mV,低于工业RuO2-IrO2,并且具有更低的电阻和更高的电荷转移效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrochemical dealloying in ChCl-Urea Deep eutectic solvent: A strategy to fabricate porous FeCoNiAlMo high-entropy alloy with enhanced oxygen evolution reaction activity
High-entropy alloys (HEAs), as a new type of multi-element alloy, have become widely studied electrocatalytic materials in recent years due to their excellent catalytic performance. The experimental material used FeCoNiAlMo HEA with equal atomic ratio as the precursor, and three-dimensional nanostructures were formed by dealloying in choline chloride-urea (ChCl-Urea). The results indicate that Fe20Co20Ni20Al20Mo20 HEA is mainly composed of body-centered cubic (BCC) phase and face-centered cubic (FCC) phase, with BCC phase accounting for a larger proportion. Due to the different corrosion resistance of elements and the difference in element content distribution between the two phases, the FCC phase is preferentially corroded, resulting in a three-dimensional porous morphology. This unique structure synergistically reduces the energy barrier during the hydrolysis dissociation process, giving the material a significant advantage in the oxygen evolution reaction (OER) process. At a current density of 10 mA cm−2, the overpotential of the treated alloy is as low as 312 mV, which is lower than the commercial RuO2-IrO2, and it has lower resistance and higher charge transfer efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
50
审稿时长
114 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信