{"title":"分散式能源系统的能源安全:利用农业发电实现电力自给自足的村庄?","authors":"Martin Bauknecht","doi":"10.1016/j.egyr.2025.07.020","DOIUrl":null,"url":null,"abstract":"<div><div>With the Green Deal, the energy transition in the EU has gained momentum. Almost half of electricity consumption is now covered by renewable energies, with solar technology accounting for a significant share. However, the massive expansion of photovoltaics is increasingly being felt by every individual locally. The electrical grids are reaching their capacity limits. The number of redispatch measures is rising exponentially to keep the system running smoothly. This, in turn, is reflected on the electricity exchange in exorbitantly low exchange prices and, during windy and sunny hours, even in negative exchange prices. These trends raise the question of how energy security can be maintained and achieved in the future. In this context, a decentralized energy system is being modeled to create an electricity self-sufficient village using agrivoltaics. This has the advantage that the land can be used for dual purposes. The shared use of energy between citizens, commercials, municipalities and farmers creates a self-managed energy community. Farmers play a key role in this dual land use. This paper examines the central research question of what contribution an electricity self-sufficient village using agrivoltaics can make to energy security. This paper is based on a survey of 215 German farmers. The survey results show a trend that energy security can be increased through this modelled decentralized energy system. Various policy implications can be formulated for the realization of an electricity self-sufficient village using agrivoltaics. The first step is to achieve electricity self-sufficiency during the sunny months from March to October, until cross-seasonal storage media are available and ready for series production.</div></div>","PeriodicalId":11798,"journal":{"name":"Energy Reports","volume":"14 ","pages":"Pages 1523-1528"},"PeriodicalIF":5.1000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy security through decentralized energy system: Electricity self-sufficient village using agrivoltaics?\",\"authors\":\"Martin Bauknecht\",\"doi\":\"10.1016/j.egyr.2025.07.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the Green Deal, the energy transition in the EU has gained momentum. Almost half of electricity consumption is now covered by renewable energies, with solar technology accounting for a significant share. However, the massive expansion of photovoltaics is increasingly being felt by every individual locally. The electrical grids are reaching their capacity limits. The number of redispatch measures is rising exponentially to keep the system running smoothly. This, in turn, is reflected on the electricity exchange in exorbitantly low exchange prices and, during windy and sunny hours, even in negative exchange prices. These trends raise the question of how energy security can be maintained and achieved in the future. In this context, a decentralized energy system is being modeled to create an electricity self-sufficient village using agrivoltaics. This has the advantage that the land can be used for dual purposes. The shared use of energy between citizens, commercials, municipalities and farmers creates a self-managed energy community. Farmers play a key role in this dual land use. This paper examines the central research question of what contribution an electricity self-sufficient village using agrivoltaics can make to energy security. This paper is based on a survey of 215 German farmers. The survey results show a trend that energy security can be increased through this modelled decentralized energy system. Various policy implications can be formulated for the realization of an electricity self-sufficient village using agrivoltaics. The first step is to achieve electricity self-sufficiency during the sunny months from March to October, until cross-seasonal storage media are available and ready for series production.</div></div>\",\"PeriodicalId\":11798,\"journal\":{\"name\":\"Energy Reports\",\"volume\":\"14 \",\"pages\":\"Pages 1523-1528\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Reports\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352484725004433\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352484725004433","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Energy security through decentralized energy system: Electricity self-sufficient village using agrivoltaics?
With the Green Deal, the energy transition in the EU has gained momentum. Almost half of electricity consumption is now covered by renewable energies, with solar technology accounting for a significant share. However, the massive expansion of photovoltaics is increasingly being felt by every individual locally. The electrical grids are reaching their capacity limits. The number of redispatch measures is rising exponentially to keep the system running smoothly. This, in turn, is reflected on the electricity exchange in exorbitantly low exchange prices and, during windy and sunny hours, even in negative exchange prices. These trends raise the question of how energy security can be maintained and achieved in the future. In this context, a decentralized energy system is being modeled to create an electricity self-sufficient village using agrivoltaics. This has the advantage that the land can be used for dual purposes. The shared use of energy between citizens, commercials, municipalities and farmers creates a self-managed energy community. Farmers play a key role in this dual land use. This paper examines the central research question of what contribution an electricity self-sufficient village using agrivoltaics can make to energy security. This paper is based on a survey of 215 German farmers. The survey results show a trend that energy security can be increased through this modelled decentralized energy system. Various policy implications can be formulated for the realization of an electricity self-sufficient village using agrivoltaics. The first step is to achieve electricity self-sufficiency during the sunny months from March to October, until cross-seasonal storage media are available and ready for series production.
期刊介绍:
Energy Reports is a new online multidisciplinary open access journal which focuses on publishing new research in the area of Energy with a rapid review and publication time. Energy Reports will be open to direct submissions and also to submissions from other Elsevier Energy journals, whose Editors have determined that Energy Reports would be a better fit.