{"title":"有界区域l2 -亚临界Kirchhoff能量泛函的质量浓度最小化","authors":"Chen Yang, Shubin Yu, Chun-Lei Tang","doi":"10.1016/j.jde.2025.113659","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-constraint minimizers for the Kirchhoff functional<span><span><span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>b</mi></mrow></msub><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><munder><mo>∫</mo><mrow><mi>Ω</mi></mrow></munder><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>x</mi><mo>+</mo><mfrac><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></mfrac><msup><mrow><mo>(</mo><munder><mo>∫</mo><mrow><mi>Ω</mi></mrow></munder><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>x</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><munder><mo>∫</mo><mrow><mi>Ω</mi></mrow></munder><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>x</mi><mo>−</mo><mfrac><mrow><mi>β</mi></mrow><mrow><mn>2</mn></mrow></mfrac><munder><mo>∫</mo><mrow><mi>Ω</mi></mrow></munder><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>4</mn></mrow></msup><mi>d</mi><mi>x</mi><mo>,</mo></math></span></span></span> where <span><math><mi>b</mi><mo>,</mo><mi>β</mi><mo>></mo><mn>0</mn></math></span> and <span><math><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is a trapping potential in a bounded domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. As is well-known that minimizers exist for any <span><math><mi>b</mi><mo>,</mo><mi>β</mi><mo>></mo><mn>0</mn></math></span>, while the minimizers do not exist for <span><math><mi>b</mi><mo>=</mo><mn>0</mn></math></span> and <span><math><mi>β</mi><mo>≥</mo><msup><mrow><mi>β</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, where <span><math><msup><mrow><mi>β</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>=</mo><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub><mo>|</mo><mi>Q</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>x</mi></math></span> and <em>Q</em> is the unique positive solution of <span><math><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>u</mi><mo>−</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>=</mo><mn>0</mn></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. We give the refined energy estimates and limit behaviors of minimizers as <span><math><mi>b</mi><mo>↘</mo><mn>0</mn></math></span> for <span><math><mi>β</mi><mo>=</mo><msup><mrow><mi>β</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> or <span><math><mi>β</mi><mo>></mo><msup><mrow><mi>β</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>. For both cases, we obtain the mass of minimizers concentrates either at an inner point or near the boundary of Ω, depending on whether <span><math><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> attains its flattest global minimum at an inner point or not. Meanwhile, we find an interesting phenomenon that the blow-up rate when the minimizers concentrate near the boundary is faster than concentration at an interior point if <span><math><mi>β</mi><mo>=</mo><msup><mrow><mi>β</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, but the blow-up rates remain consistent if <span><math><mi>β</mi><mo>></mo><msup><mrow><mi>β</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"445 ","pages":"Article 113659"},"PeriodicalIF":2.3000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mass concentration of minimizers for L2-subcritical Kirchhoff energy functional in bounded domains\",\"authors\":\"Chen Yang, Shubin Yu, Chun-Lei Tang\",\"doi\":\"10.1016/j.jde.2025.113659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we consider <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-constraint minimizers for the Kirchhoff functional<span><span><span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>b</mi></mrow></msub><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><munder><mo>∫</mo><mrow><mi>Ω</mi></mrow></munder><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>x</mi><mo>+</mo><mfrac><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></mfrac><msup><mrow><mo>(</mo><munder><mo>∫</mo><mrow><mi>Ω</mi></mrow></munder><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>x</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><munder><mo>∫</mo><mrow><mi>Ω</mi></mrow></munder><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>x</mi><mo>−</mo><mfrac><mrow><mi>β</mi></mrow><mrow><mn>2</mn></mrow></mfrac><munder><mo>∫</mo><mrow><mi>Ω</mi></mrow></munder><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>4</mn></mrow></msup><mi>d</mi><mi>x</mi><mo>,</mo></math></span></span></span> where <span><math><mi>b</mi><mo>,</mo><mi>β</mi><mo>></mo><mn>0</mn></math></span> and <span><math><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is a trapping potential in a bounded domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. As is well-known that minimizers exist for any <span><math><mi>b</mi><mo>,</mo><mi>β</mi><mo>></mo><mn>0</mn></math></span>, while the minimizers do not exist for <span><math><mi>b</mi><mo>=</mo><mn>0</mn></math></span> and <span><math><mi>β</mi><mo>≥</mo><msup><mrow><mi>β</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, where <span><math><msup><mrow><mi>β</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>=</mo><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub><mo>|</mo><mi>Q</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>x</mi></math></span> and <em>Q</em> is the unique positive solution of <span><math><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>u</mi><mo>−</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>=</mo><mn>0</mn></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. We give the refined energy estimates and limit behaviors of minimizers as <span><math><mi>b</mi><mo>↘</mo><mn>0</mn></math></span> for <span><math><mi>β</mi><mo>=</mo><msup><mrow><mi>β</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> or <span><math><mi>β</mi><mo>></mo><msup><mrow><mi>β</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>. For both cases, we obtain the mass of minimizers concentrates either at an inner point or near the boundary of Ω, depending on whether <span><math><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> attains its flattest global minimum at an inner point or not. Meanwhile, we find an interesting phenomenon that the blow-up rate when the minimizers concentrate near the boundary is faster than concentration at an interior point if <span><math><mi>β</mi><mo>=</mo><msup><mrow><mi>β</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, but the blow-up rates remain consistent if <span><math><mi>β</mi><mo>></mo><msup><mrow><mi>β</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"445 \",\"pages\":\"Article 113659\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625006862\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625006862","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Mass concentration of minimizers for L2-subcritical Kirchhoff energy functional in bounded domains
In this paper, we consider -constraint minimizers for the Kirchhoff functional where and is a trapping potential in a bounded domain . As is well-known that minimizers exist for any , while the minimizers do not exist for and , where and Q is the unique positive solution of in . We give the refined energy estimates and limit behaviors of minimizers as for or . For both cases, we obtain the mass of minimizers concentrates either at an inner point or near the boundary of Ω, depending on whether attains its flattest global minimum at an inner point or not. Meanwhile, we find an interesting phenomenon that the blow-up rate when the minimizers concentrate near the boundary is faster than concentration at an interior point if , but the blow-up rates remain consistent if .
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics