有界区域l2 -亚临界Kirchhoff能量泛函的质量浓度最小化

IF 2.3 2区 数学 Q1 MATHEMATICS
Chen Yang, Shubin Yu, Chun-Lei Tang
{"title":"有界区域l2 -亚临界Kirchhoff能量泛函的质量浓度最小化","authors":"Chen Yang,&nbsp;Shubin Yu,&nbsp;Chun-Lei Tang","doi":"10.1016/j.jde.2025.113659","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-constraint minimizers for the Kirchhoff functional<span><span><span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>b</mi></mrow></msub><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><munder><mo>∫</mo><mrow><mi>Ω</mi></mrow></munder><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>x</mi><mo>+</mo><mfrac><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></mfrac><msup><mrow><mo>(</mo><munder><mo>∫</mo><mrow><mi>Ω</mi></mrow></munder><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>x</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><munder><mo>∫</mo><mrow><mi>Ω</mi></mrow></munder><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>x</mi><mo>−</mo><mfrac><mrow><mi>β</mi></mrow><mrow><mn>2</mn></mrow></mfrac><munder><mo>∫</mo><mrow><mi>Ω</mi></mrow></munder><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>4</mn></mrow></msup><mi>d</mi><mi>x</mi><mo>,</mo></math></span></span></span> where <span><math><mi>b</mi><mo>,</mo><mi>β</mi><mo>&gt;</mo><mn>0</mn></math></span> and <span><math><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is a trapping potential in a bounded domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. As is well-known that minimizers exist for any <span><math><mi>b</mi><mo>,</mo><mi>β</mi><mo>&gt;</mo><mn>0</mn></math></span>, while the minimizers do not exist for <span><math><mi>b</mi><mo>=</mo><mn>0</mn></math></span> and <span><math><mi>β</mi><mo>≥</mo><msup><mrow><mi>β</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, where <span><math><msup><mrow><mi>β</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>=</mo><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub><mo>|</mo><mi>Q</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>x</mi></math></span> and <em>Q</em> is the unique positive solution of <span><math><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>u</mi><mo>−</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>=</mo><mn>0</mn></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. We give the refined energy estimates and limit behaviors of minimizers as <span><math><mi>b</mi><mo>↘</mo><mn>0</mn></math></span> for <span><math><mi>β</mi><mo>=</mo><msup><mrow><mi>β</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> or <span><math><mi>β</mi><mo>&gt;</mo><msup><mrow><mi>β</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>. For both cases, we obtain the mass of minimizers concentrates either at an inner point or near the boundary of Ω, depending on whether <span><math><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> attains its flattest global minimum at an inner point or not. Meanwhile, we find an interesting phenomenon that the blow-up rate when the minimizers concentrate near the boundary is faster than concentration at an interior point if <span><math><mi>β</mi><mo>=</mo><msup><mrow><mi>β</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, but the blow-up rates remain consistent if <span><math><mi>β</mi><mo>&gt;</mo><msup><mrow><mi>β</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"445 ","pages":"Article 113659"},"PeriodicalIF":2.3000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mass concentration of minimizers for L2-subcritical Kirchhoff energy functional in bounded domains\",\"authors\":\"Chen Yang,&nbsp;Shubin Yu,&nbsp;Chun-Lei Tang\",\"doi\":\"10.1016/j.jde.2025.113659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we consider <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-constraint minimizers for the Kirchhoff functional<span><span><span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>b</mi></mrow></msub><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><munder><mo>∫</mo><mrow><mi>Ω</mi></mrow></munder><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>x</mi><mo>+</mo><mfrac><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></mfrac><msup><mrow><mo>(</mo><munder><mo>∫</mo><mrow><mi>Ω</mi></mrow></munder><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>x</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><munder><mo>∫</mo><mrow><mi>Ω</mi></mrow></munder><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>x</mi><mo>−</mo><mfrac><mrow><mi>β</mi></mrow><mrow><mn>2</mn></mrow></mfrac><munder><mo>∫</mo><mrow><mi>Ω</mi></mrow></munder><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>4</mn></mrow></msup><mi>d</mi><mi>x</mi><mo>,</mo></math></span></span></span> where <span><math><mi>b</mi><mo>,</mo><mi>β</mi><mo>&gt;</mo><mn>0</mn></math></span> and <span><math><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is a trapping potential in a bounded domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. As is well-known that minimizers exist for any <span><math><mi>b</mi><mo>,</mo><mi>β</mi><mo>&gt;</mo><mn>0</mn></math></span>, while the minimizers do not exist for <span><math><mi>b</mi><mo>=</mo><mn>0</mn></math></span> and <span><math><mi>β</mi><mo>≥</mo><msup><mrow><mi>β</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, where <span><math><msup><mrow><mi>β</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>=</mo><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub><mo>|</mo><mi>Q</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>x</mi></math></span> and <em>Q</em> is the unique positive solution of <span><math><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>u</mi><mo>−</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>=</mo><mn>0</mn></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. We give the refined energy estimates and limit behaviors of minimizers as <span><math><mi>b</mi><mo>↘</mo><mn>0</mn></math></span> for <span><math><mi>β</mi><mo>=</mo><msup><mrow><mi>β</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> or <span><math><mi>β</mi><mo>&gt;</mo><msup><mrow><mi>β</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>. For both cases, we obtain the mass of minimizers concentrates either at an inner point or near the boundary of Ω, depending on whether <span><math><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> attains its flattest global minimum at an inner point or not. Meanwhile, we find an interesting phenomenon that the blow-up rate when the minimizers concentrate near the boundary is faster than concentration at an interior point if <span><math><mi>β</mi><mo>=</mo><msup><mrow><mi>β</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, but the blow-up rates remain consistent if <span><math><mi>β</mi><mo>&gt;</mo><msup><mrow><mi>β</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"445 \",\"pages\":\"Article 113659\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625006862\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625006862","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑Kirchhoff泛函eb (u)=∫Ω|∇u|2dx+b2(∫Ω|∇u|2dx)2+∫ΩV(x)u2dx−β2∫Ω|u|4dx的l2约束最小化,其中b,β>;0和V(x)是有界域Ω∧R2中的捕获势。众所周知,对于任意b,β>;0都存在极小值,而对于b=0和β≥β,则不存在极小值,其中β =∫R2 0 Q|2dx,且Q是- Δu+u−u3=0在R2中的唯一正解。对于β=β或β>;β,我们给出了最小化器的精细能量估计和极限行为为b 0。对于这两种情况,我们获得了集中在内部点或Ω边界附近的最小化器的质量,这取决于V(x)是否在内部点达到其最平坦的全局最小值。同时,我们发现了一个有趣的现象,当β=β时,最小化器集中在边界附近时的爆炸速率比集中在内部点时的爆炸速率快,但当β>;β时,爆炸速率保持一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mass concentration of minimizers for L2-subcritical Kirchhoff energy functional in bounded domains
In this paper, we consider L2-constraint minimizers for the Kirchhoff functionalEb(u)=Ω|u|2dx+b2(Ω|u|2dx)2+ΩV(x)u2dxβ2Ω|u|4dx, where b,β>0 and V(x) is a trapping potential in a bounded domain ΩR2. As is well-known that minimizers exist for any b,β>0, while the minimizers do not exist for b=0 and ββ, where β=R2|Q|2dx and Q is the unique positive solution of Δu+uu3=0 in R2. We give the refined energy estimates and limit behaviors of minimizers as b0 for β=β or β>β. For both cases, we obtain the mass of minimizers concentrates either at an inner point or near the boundary of Ω, depending on whether V(x) attains its flattest global minimum at an inner point or not. Meanwhile, we find an interesting phenomenon that the blow-up rate when the minimizers concentrate near the boundary is faster than concentration at an interior point if β=β, but the blow-up rates remain consistent if β>β.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信