平流对漂食捕食者捕食动力学的影响

IF 2.3 2区 数学 Q1 MATHEMATICS
Biao Wang , Hao Wang
{"title":"平流对漂食捕食者捕食动力学的影响","authors":"Biao Wang ,&nbsp;Hao Wang","doi":"10.1016/j.jde.2025.113660","DOIUrl":null,"url":null,"abstract":"<div><div>We examine a diffusive predator-prey model with a drift-feeding predator in open advective environments. Our analysis reveals key insights: (i) When predator mortality is low, the stability of the semi-trivial steady state can shift at least twice as flow speed increases, regardless of predator diffusion; (ii) For intermediate mortality and low diffusion, stability transitions occur, but beyond a critical diffusion threshold, the steady state remains stable regardless of flow speed. Using bifurcation theory and auxiliary methods, we establish the existence and uniqueness of a positive steady state. Unlike previous studies suggesting increased flow speed harms population persistence, our results show it can sometimes promote predator-prey coexistence, highlighting the complex effects of advection on ecological dynamics.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"445 ","pages":"Article 113660"},"PeriodicalIF":2.3000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of advection on the predator-prey dynamics with a drift-feeding predator\",\"authors\":\"Biao Wang ,&nbsp;Hao Wang\",\"doi\":\"10.1016/j.jde.2025.113660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We examine a diffusive predator-prey model with a drift-feeding predator in open advective environments. Our analysis reveals key insights: (i) When predator mortality is low, the stability of the semi-trivial steady state can shift at least twice as flow speed increases, regardless of predator diffusion; (ii) For intermediate mortality and low diffusion, stability transitions occur, but beyond a critical diffusion threshold, the steady state remains stable regardless of flow speed. Using bifurcation theory and auxiliary methods, we establish the existence and uniqueness of a positive steady state. Unlike previous studies suggesting increased flow speed harms population persistence, our results show it can sometimes promote predator-prey coexistence, highlighting the complex effects of advection on ecological dynamics.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"445 \",\"pages\":\"Article 113660\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625006874\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625006874","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了一个扩散捕食者-猎物模型与漂流捕食者在开放的平流环境。我们的分析揭示了关键的见解:(i)当捕食者死亡率较低时,无论捕食者扩散与否,随着流速的增加,半平凡稳态的稳定性至少会改变两次;(ii)对于中等死亡率和低扩散,会发生稳定过渡,但超过临界扩散阈值后,无论流速如何,稳态都保持稳定。利用分岔理论和辅助方法,建立了正稳态的存在唯一性。与以往的研究结果不同,我们的研究结果表明,平流有时可以促进捕食者-猎物共存,突出了平流对生态动力学的复杂影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of advection on the predator-prey dynamics with a drift-feeding predator
We examine a diffusive predator-prey model with a drift-feeding predator in open advective environments. Our analysis reveals key insights: (i) When predator mortality is low, the stability of the semi-trivial steady state can shift at least twice as flow speed increases, regardless of predator diffusion; (ii) For intermediate mortality and low diffusion, stability transitions occur, but beyond a critical diffusion threshold, the steady state remains stable regardless of flow speed. Using bifurcation theory and auxiliary methods, we establish the existence and uniqueness of a positive steady state. Unlike previous studies suggesting increased flow speed harms population persistence, our results show it can sometimes promote predator-prey coexistence, highlighting the complex effects of advection on ecological dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信