局部稀疏图中独立截线的近似填充

IF 1.2 1区 数学 Q1 MATHEMATICS
Debsoumya Chakraborti , Tuan Tran
{"title":"局部稀疏图中独立截线的近似填充","authors":"Debsoumya Chakraborti ,&nbsp;Tuan Tran","doi":"10.1016/j.jctb.2025.07.005","DOIUrl":null,"url":null,"abstract":"<div><div>Fix <span><math><mi>ε</mi><mo>&gt;</mo><mn>0</mn></math></span> and consider a multipartite graph <em>G</em> with maximum degree at most <span><math><mo>(</mo><mn>1</mn><mo>−</mo><mi>ε</mi><mo>)</mo><mi>n</mi></math></span>, parts <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> of the same size <em>n</em>, and where every vertex has at most <span><math><mi>o</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> neighbors in any part <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>. Loh and Sudakov proved that any such <em>G</em> has an independent transversal. They further conjectured that the vertex set of <em>G</em> can be decomposed into pairwise disjoint independent transversals. In the present paper, we resolve this conjecture approximately by showing that <em>G</em> contains <span><math><mo>(</mo><mn>1</mn><mo>−</mo><mi>ε</mi><mo>)</mo><mi>n</mi></math></span> pairwise disjoint independent transversals. As applications, we give approximate answers to questions of Yuster, and of Fischer, Kühn, and Osthus.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"175 ","pages":"Pages 187-212"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximate packing of independent transversals in locally sparse graphs\",\"authors\":\"Debsoumya Chakraborti ,&nbsp;Tuan Tran\",\"doi\":\"10.1016/j.jctb.2025.07.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Fix <span><math><mi>ε</mi><mo>&gt;</mo><mn>0</mn></math></span> and consider a multipartite graph <em>G</em> with maximum degree at most <span><math><mo>(</mo><mn>1</mn><mo>−</mo><mi>ε</mi><mo>)</mo><mi>n</mi></math></span>, parts <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> of the same size <em>n</em>, and where every vertex has at most <span><math><mi>o</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> neighbors in any part <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>. Loh and Sudakov proved that any such <em>G</em> has an independent transversal. They further conjectured that the vertex set of <em>G</em> can be decomposed into pairwise disjoint independent transversals. In the present paper, we resolve this conjecture approximately by showing that <em>G</em> contains <span><math><mo>(</mo><mn>1</mn><mo>−</mo><mi>ε</mi><mo>)</mo><mi>n</mi></math></span> pairwise disjoint independent transversals. As applications, we give approximate answers to questions of Yuster, and of Fischer, Kühn, and Osthus.</div></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"175 \",\"pages\":\"Pages 187-212\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S009589562500053X\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009589562500053X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

固定ε>;0,考虑一个最大度数为(1−ε)n的多部图G,部分V1,…,Vk的大小为相同n,其中每个顶点在任何部分Vi中最多有o(n)个邻居。Loh和Sudakov证明了任何这样的G都有独立的截线。他们进一步推测,G的顶点集可以分解成两两不相交的独立截线。在本文中,我们通过证明G包含(1−ε)n对不相交的独立截线近似地解决了这个猜想。作为应用,我们给出了Yuster、Fischer、k hn和Osthus问题的近似答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximate packing of independent transversals in locally sparse graphs
Fix ε>0 and consider a multipartite graph G with maximum degree at most (1ε)n, parts V1,,Vk of the same size n, and where every vertex has at most o(n) neighbors in any part Vi. Loh and Sudakov proved that any such G has an independent transversal. They further conjectured that the vertex set of G can be decomposed into pairwise disjoint independent transversals. In the present paper, we resolve this conjecture approximately by showing that G contains (1ε)n pairwise disjoint independent transversals. As applications, we give approximate answers to questions of Yuster, and of Fischer, Kühn, and Osthus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信