Rani , Faiz Ali , Mian Muhammad , Zeid A. AlOthman
{"title":"光催化降解吡虫啉的掺杂碳点(CDP)合成及表征","authors":"Rani , Faiz Ali , Mian Muhammad , Zeid A. AlOthman","doi":"10.1016/j.cjac.2025.100576","DOIUrl":null,"url":null,"abstract":"<div><div>An effective photo catalytic method utilizing fluorescent carbon dots (CDP) has been developed for the degradation of imidacloprid. The CDP were synthesized hydrothermally using fructose, palladium, and ethylene diamine and they were characterized via Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), spectrofluorometer, ultraviolet-visible spectroscopy (UV-Vis), and energy dispersive X-ray spectroscopy (EDX) techniques. The key determinants were optimized and using the optimized conditions. 97 % photocatalytic degradation of imidacloprid was achieved in 40 min at 365 nm using 5.0 mg L<sup>–</sup><sup>1</sup> of imidacloprid at pH 10. The catalyst loading, and the response time were effectively correlated, emphasizing the critical role in improving the degrading efficiency. The pseudo- first order and second order kinetic models were applied to the data showing the best fitting with pseudo-first order kinetic model. The CDP can be used for repeated cycles maintaining its degradation efficiency within reasonable limits. The results highlighted the promising potential of using carbon dots as effective photocatalytic materials which are cost effective and environmentally safe for water remediation.</div></div>","PeriodicalId":277,"journal":{"name":"Chinese Journal of Analytical Chemistry","volume":"53 9","pages":"Article 100576"},"PeriodicalIF":1.3000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and characterization of Pd-doped carbon dots (CDP) for the photocatalytic degradation of imidacloprid\",\"authors\":\"Rani , Faiz Ali , Mian Muhammad , Zeid A. AlOthman\",\"doi\":\"10.1016/j.cjac.2025.100576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>An effective photo catalytic method utilizing fluorescent carbon dots (CDP) has been developed for the degradation of imidacloprid. The CDP were synthesized hydrothermally using fructose, palladium, and ethylene diamine and they were characterized via Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), spectrofluorometer, ultraviolet-visible spectroscopy (UV-Vis), and energy dispersive X-ray spectroscopy (EDX) techniques. The key determinants were optimized and using the optimized conditions. 97 % photocatalytic degradation of imidacloprid was achieved in 40 min at 365 nm using 5.0 mg L<sup>–</sup><sup>1</sup> of imidacloprid at pH 10. The catalyst loading, and the response time were effectively correlated, emphasizing the critical role in improving the degrading efficiency. The pseudo- first order and second order kinetic models were applied to the data showing the best fitting with pseudo-first order kinetic model. The CDP can be used for repeated cycles maintaining its degradation efficiency within reasonable limits. The results highlighted the promising potential of using carbon dots as effective photocatalytic materials which are cost effective and environmentally safe for water remediation.</div></div>\",\"PeriodicalId\":277,\"journal\":{\"name\":\"Chinese Journal of Analytical Chemistry\",\"volume\":\"53 9\",\"pages\":\"Article 100576\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872204025000866\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872204025000866","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Synthesis and characterization of Pd-doped carbon dots (CDP) for the photocatalytic degradation of imidacloprid
An effective photo catalytic method utilizing fluorescent carbon dots (CDP) has been developed for the degradation of imidacloprid. The CDP were synthesized hydrothermally using fructose, palladium, and ethylene diamine and they were characterized via Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), spectrofluorometer, ultraviolet-visible spectroscopy (UV-Vis), and energy dispersive X-ray spectroscopy (EDX) techniques. The key determinants were optimized and using the optimized conditions. 97 % photocatalytic degradation of imidacloprid was achieved in 40 min at 365 nm using 5.0 mg L–1 of imidacloprid at pH 10. The catalyst loading, and the response time were effectively correlated, emphasizing the critical role in improving the degrading efficiency. The pseudo- first order and second order kinetic models were applied to the data showing the best fitting with pseudo-first order kinetic model. The CDP can be used for repeated cycles maintaining its degradation efficiency within reasonable limits. The results highlighted the promising potential of using carbon dots as effective photocatalytic materials which are cost effective and environmentally safe for water remediation.
期刊介绍:
Chinese Journal of Analytical Chemistry(CJAC) is an academic journal of analytical chemistry established in 1972 and sponsored by the Chinese Chemical Society and Changchun Institute of Applied Chemistry, Chinese Academy of Sciences. Its objectives are to report the original scientific research achievements and review the recent development of analytical chemistry in all areas. The journal sets up 5 columns including Research Papers, Research Notes, Experimental Technique and Instrument, Review and Progress and Summary Accounts. The journal published monthly in Chinese language. A detailed abstract, keywords and the titles of figures and tables are provided in English, except column of Summary Accounts. Prof. Wang Erkang, an outstanding analytical chemist, academician of Chinese Academy of Sciences & Third World Academy of Sciences, holds the post of the Editor-in-chief.