开发分析网络话语的话语空间

IF 3.1 2区 文学 Q1 COMMUNICATION
Kateryna Krykoniuk, Cleo Hopkin-King, Seán G. Roberts
{"title":"开发分析网络话语的话语空间","authors":"Kateryna Krykoniuk,&nbsp;Cleo Hopkin-King,&nbsp;Seán G. Roberts","doi":"10.1016/j.dcm.2025.100929","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding the dynamics of online discourse is crucial for dealing with disinformation, radicalisation and hate speech. However, there are few formal models of how commenters orient their messages to each other to create online discourse. We introduce the concept of a ‘discourse space’—a novel conceptual framework that serves as an abstract meta-representation of discourse. It provides an opportunity to quantify discourse and explore its dynamics by leveraging a range of possible discourse strategies, spanning four key aspects: cohesion, attitude, logic quality and coherence. With this view, discourse strategies emerge as generalised techniques for linguistically shaping thoughts based on the social context. To construct an empirical space from real data, 1,684 message pairs from 50 YouTube video comment sections were tagged for 25 discourse strategies. Using an advanced dimension-reduction method (t-distributed stochastic neighbour embedding, t-SNE), we demonstrate that a systematic discourse space can be constructed from the data. Specifically, the relations between individual social media messages can be positioned within the discourse space and that messages which attempt to derail the discourse occupy a specific part of this space. Furthermore, there are distinct patterns of discourse derailment within this discourse space that an automatic system could detect.</div></div>","PeriodicalId":46649,"journal":{"name":"Discourse Context & Media","volume":"67 ","pages":"Article 100929"},"PeriodicalIF":3.1000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing a discourse space for analysing online discourse\",\"authors\":\"Kateryna Krykoniuk,&nbsp;Cleo Hopkin-King,&nbsp;Seán G. Roberts\",\"doi\":\"10.1016/j.dcm.2025.100929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Understanding the dynamics of online discourse is crucial for dealing with disinformation, radicalisation and hate speech. However, there are few formal models of how commenters orient their messages to each other to create online discourse. We introduce the concept of a ‘discourse space’—a novel conceptual framework that serves as an abstract meta-representation of discourse. It provides an opportunity to quantify discourse and explore its dynamics by leveraging a range of possible discourse strategies, spanning four key aspects: cohesion, attitude, logic quality and coherence. With this view, discourse strategies emerge as generalised techniques for linguistically shaping thoughts based on the social context. To construct an empirical space from real data, 1,684 message pairs from 50 YouTube video comment sections were tagged for 25 discourse strategies. Using an advanced dimension-reduction method (t-distributed stochastic neighbour embedding, t-SNE), we demonstrate that a systematic discourse space can be constructed from the data. Specifically, the relations between individual social media messages can be positioned within the discourse space and that messages which attempt to derail the discourse occupy a specific part of this space. Furthermore, there are distinct patterns of discourse derailment within this discourse space that an automatic system could detect.</div></div>\",\"PeriodicalId\":46649,\"journal\":{\"name\":\"Discourse Context & Media\",\"volume\":\"67 \",\"pages\":\"Article 100929\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discourse Context & Media\",\"FirstCategoryId\":\"98\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211695825000789\",\"RegionNum\":2,\"RegionCategory\":\"文学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMMUNICATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discourse Context & Media","FirstCategoryId":"98","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211695825000789","RegionNum":2,"RegionCategory":"文学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMMUNICATION","Score":null,"Total":0}
引用次数: 0

摘要

了解网络话语的动态对于处理虚假信息、激进化和仇恨言论至关重要。然而,很少有正式的模型来说明评论者如何将他们的信息定向到彼此之间以创建在线话语。我们引入了“话语空间”的概念——一个作为话语抽象元表征的新概念框架。它提供了一个机会,通过利用一系列可能的话语策略来量化话语并探索其动态,这些策略涵盖四个关键方面:衔接、态度、逻辑质量和连贯。根据这一观点,话语策略作为基于社会语境的语言塑造思想的一般技术而出现。为了从真实数据中构建经验空间,我们对来自50个YouTube视频评论区的1,684条消息对进行了25种话语策略的标记。使用一种先进的降维方法(t分布随机邻居嵌入,t-SNE),我们证明了可以从数据中构建系统的话语空间。具体来说,个体社交媒体信息之间的关系可以定位在话语空间中,试图使话语脱轨的信息占据了这个空间的特定部分。此外,在这个话语空间中存在着自动系统可以检测到的话语脱轨的不同模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Developing a discourse space for analysing online discourse
Understanding the dynamics of online discourse is crucial for dealing with disinformation, radicalisation and hate speech. However, there are few formal models of how commenters orient their messages to each other to create online discourse. We introduce the concept of a ‘discourse space’—a novel conceptual framework that serves as an abstract meta-representation of discourse. It provides an opportunity to quantify discourse and explore its dynamics by leveraging a range of possible discourse strategies, spanning four key aspects: cohesion, attitude, logic quality and coherence. With this view, discourse strategies emerge as generalised techniques for linguistically shaping thoughts based on the social context. To construct an empirical space from real data, 1,684 message pairs from 50 YouTube video comment sections were tagged for 25 discourse strategies. Using an advanced dimension-reduction method (t-distributed stochastic neighbour embedding, t-SNE), we demonstrate that a systematic discourse space can be constructed from the data. Specifically, the relations between individual social media messages can be positioned within the discourse space and that messages which attempt to derail the discourse occupy a specific part of this space. Furthermore, there are distinct patterns of discourse derailment within this discourse space that an automatic system could detect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discourse Context & Media
Discourse Context & Media COMMUNICATION-
CiteScore
5.00
自引率
10.00%
发文量
46
审稿时长
55 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信