用于纳米催化剂筛选和环境研究的高性价比PMMA光催化微反应器

IF 7.1 Q1 ENGINEERING, CHEMICAL
Soontorn Tuntithavornwat , Kasitipun Saengpitak , Peerapol Phitaksidchareon , Theerut Sdayuruch , Mali Hunsom
{"title":"用于纳米催化剂筛选和环境研究的高性价比PMMA光催化微反应器","authors":"Soontorn Tuntithavornwat ,&nbsp;Kasitipun Saengpitak ,&nbsp;Peerapol Phitaksidchareon ,&nbsp;Theerut Sdayuruch ,&nbsp;Mali Hunsom","doi":"10.1016/j.ceja.2025.100815","DOIUrl":null,"url":null,"abstract":"<div><div>Photocatalysis offers a sustainable, chemical-free approach for wastewater remediation, yet conventional glass-based reactors remain bulky, catalyst-intensive, and unsuitable for high-throughput material screening. This study presents a low-cost, laser-fabricated poly(methyl methacrylate) (PMMA) microreactor (∼0.6 mL) with immobilized commercial TiO<sub>2</sub> or ZnO nanoparticles, supporting both batch and continuous-flow operation. In batch mode, pseudo-first-order rate constants reached 2.57 × 10⁻² min⁻¹ for TiO<sub>2</sub> and 2.82 × 10⁻² min⁻¹ for ZnO during methylene blue degradation, with &gt;80 % removal achieved within 30 min. Methyl orange degradation followed similar trends with lower rates, reflecting charge and structural effects. The microreactor retained &gt;95 % of initial performance over five reuse cycles, confirming coating stability. Continuous-flow tests demonstrated multifunctionality: ∼75 % Ag⁺ removal and &gt;80 % <em>Escherichia coli</em> inactivation within 15 min. Surface modification with cetyl-trimethyl-ammonium bromide (CTAB) reduced water contact angle from 78° to 26°, boosting TiO<sub>2</sub> photocatalytic efficiency (<em>k</em> = 3.30 × 10⁻² min⁻¹) and enhancing antibacterial performance. ZnO outperformed TiO<sub>2</sub> in both dye degradation and antibacterial assays, with ICP-MS revealing substantial Zn²⁺ leaching contributing to bactericidal activity even in the dark. Compared with conventional reactors operating under similar conditions, the microreactor exhibited higher degradation rates, attributed to enhanced mass transfer, uniform illumination, and reduced reagent and catalyst consumption. The platform’s low material cost, facile fabrication, and versatility position it as a promising tool for photocatalyst screening and as a modular element for decentralized water treatment, metal-ion recovery, and environmental disinfection.</div></div>","PeriodicalId":9749,"journal":{"name":"Chemical Engineering Journal Advances","volume":"23 ","pages":"Article 100815"},"PeriodicalIF":7.1000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cost-effective PMMA photocatalytic microreactor for nanocatalyst screening and environmental research\",\"authors\":\"Soontorn Tuntithavornwat ,&nbsp;Kasitipun Saengpitak ,&nbsp;Peerapol Phitaksidchareon ,&nbsp;Theerut Sdayuruch ,&nbsp;Mali Hunsom\",\"doi\":\"10.1016/j.ceja.2025.100815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Photocatalysis offers a sustainable, chemical-free approach for wastewater remediation, yet conventional glass-based reactors remain bulky, catalyst-intensive, and unsuitable for high-throughput material screening. This study presents a low-cost, laser-fabricated poly(methyl methacrylate) (PMMA) microreactor (∼0.6 mL) with immobilized commercial TiO<sub>2</sub> or ZnO nanoparticles, supporting both batch and continuous-flow operation. In batch mode, pseudo-first-order rate constants reached 2.57 × 10⁻² min⁻¹ for TiO<sub>2</sub> and 2.82 × 10⁻² min⁻¹ for ZnO during methylene blue degradation, with &gt;80 % removal achieved within 30 min. Methyl orange degradation followed similar trends with lower rates, reflecting charge and structural effects. The microreactor retained &gt;95 % of initial performance over five reuse cycles, confirming coating stability. Continuous-flow tests demonstrated multifunctionality: ∼75 % Ag⁺ removal and &gt;80 % <em>Escherichia coli</em> inactivation within 15 min. Surface modification with cetyl-trimethyl-ammonium bromide (CTAB) reduced water contact angle from 78° to 26°, boosting TiO<sub>2</sub> photocatalytic efficiency (<em>k</em> = 3.30 × 10⁻² min⁻¹) and enhancing antibacterial performance. ZnO outperformed TiO<sub>2</sub> in both dye degradation and antibacterial assays, with ICP-MS revealing substantial Zn²⁺ leaching contributing to bactericidal activity even in the dark. Compared with conventional reactors operating under similar conditions, the microreactor exhibited higher degradation rates, attributed to enhanced mass transfer, uniform illumination, and reduced reagent and catalyst consumption. The platform’s low material cost, facile fabrication, and versatility position it as a promising tool for photocatalyst screening and as a modular element for decentralized water treatment, metal-ion recovery, and environmental disinfection.</div></div>\",\"PeriodicalId\":9749,\"journal\":{\"name\":\"Chemical Engineering Journal Advances\",\"volume\":\"23 \",\"pages\":\"Article 100815\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Journal Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666821125001127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666821125001127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

光催化为废水修复提供了一种可持续的、无化学物质的方法,但传统的玻璃基反应器仍然体积庞大、催化剂密集,不适合高通量材料筛选。本研究提出了一种低成本,激光制造的聚甲基丙烯酸甲酯(PMMA)微反应器(约0.6 mL),固定化商业TiO2或ZnO纳米颗粒,支持间歇和连续流操作。在批处理模式下,亚甲基蓝降解过程中,TiO2的准一阶速率常数达到2.57 × 10⁻²min(⁻¹),ZnO的准一阶速率常数达到2.82 × 10⁻²min(⁻¹),在30分钟内达到80%的脱除率。甲基橙的降解也有类似的趋势,但速率更低,反映了电荷和结构效应。该微反应器在5个重复使用周期中保持了95%的初始性能,证实了涂层的稳定性。连续流测试证明了多功能性:+ 75%的Ag +和+ 80%的大肠杆菌在15分钟内灭活。十六烷基三甲基溴化铵(CTAB)表面修饰使水的接触角从78°降低到26°,提高了TiO2的光催化效率(k = 3.30 × 10⁻²min⁻¹),增强了抗菌性能。ZnO在染料降解和抗菌实验中都优于TiO2, ICP-MS显示,即使在黑暗中,Zn 2 +的浸出也有助于杀菌活性。与在相同条件下运行的传统反应器相比,微反应器表现出更高的降解率,这主要归功于传质增强、光照均匀、试剂和催化剂消耗减少。该平台的材料成本低,制造方便,多功能性使其成为光催化剂筛选的有前途的工具,也是分散水处理、金属离子回收和环境消毒的模块化元件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cost-effective PMMA photocatalytic microreactor for nanocatalyst screening and environmental research
Photocatalysis offers a sustainable, chemical-free approach for wastewater remediation, yet conventional glass-based reactors remain bulky, catalyst-intensive, and unsuitable for high-throughput material screening. This study presents a low-cost, laser-fabricated poly(methyl methacrylate) (PMMA) microreactor (∼0.6 mL) with immobilized commercial TiO2 or ZnO nanoparticles, supporting both batch and continuous-flow operation. In batch mode, pseudo-first-order rate constants reached 2.57 × 10⁻² min⁻¹ for TiO2 and 2.82 × 10⁻² min⁻¹ for ZnO during methylene blue degradation, with >80 % removal achieved within 30 min. Methyl orange degradation followed similar trends with lower rates, reflecting charge and structural effects. The microreactor retained >95 % of initial performance over five reuse cycles, confirming coating stability. Continuous-flow tests demonstrated multifunctionality: ∼75 % Ag⁺ removal and >80 % Escherichia coli inactivation within 15 min. Surface modification with cetyl-trimethyl-ammonium bromide (CTAB) reduced water contact angle from 78° to 26°, boosting TiO2 photocatalytic efficiency (k = 3.30 × 10⁻² min⁻¹) and enhancing antibacterial performance. ZnO outperformed TiO2 in both dye degradation and antibacterial assays, with ICP-MS revealing substantial Zn²⁺ leaching contributing to bactericidal activity even in the dark. Compared with conventional reactors operating under similar conditions, the microreactor exhibited higher degradation rates, attributed to enhanced mass transfer, uniform illumination, and reduced reagent and catalyst consumption. The platform’s low material cost, facile fabrication, and versatility position it as a promising tool for photocatalyst screening and as a modular element for decentralized water treatment, metal-ion recovery, and environmental disinfection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering Journal Advances
Chemical Engineering Journal Advances Engineering-Industrial and Manufacturing Engineering
CiteScore
8.30
自引率
0.00%
发文量
213
审稿时长
26 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信