空间异质性对带平流的Lotka-Volterra竞争模式正稳态的影响

IF 2.3 2区 数学 Q1 MATHEMATICS
Yaying Dong , Xueqian Zhou , Shanbing Li
{"title":"空间异质性对带平流的Lotka-Volterra竞争模式正稳态的影响","authors":"Yaying Dong ,&nbsp;Xueqian Zhou ,&nbsp;Shanbing Li","doi":"10.1016/j.jde.2025.113657","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is concerned with the steady-state problem of a Lotka-Volterra competition model with diffusion and advection, developed by Kuto and Tsujikawa (2015) <span><span>[20]</span></span> and Wang et al. (2015) <span><span>[31]</span></span>. When spatial heterogeneity is introduced into the model, we obtain some sufficient conditions for the existence and non-existence of positive steady states. Our results demonstrate the existence of a critical value for the parameter <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> in this model such that below this critical value, spatial heterogeneity has little effect on the existence and non-existence of positive steady states, whereas significant changes occur once <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> exceeds the critical value.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"444 ","pages":"Article 113657"},"PeriodicalIF":2.3000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the effects of spatial heterogeneity on positive steady states of Lotka-Volterra competition model with advection\",\"authors\":\"Yaying Dong ,&nbsp;Xueqian Zhou ,&nbsp;Shanbing Li\",\"doi\":\"10.1016/j.jde.2025.113657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper is concerned with the steady-state problem of a Lotka-Volterra competition model with diffusion and advection, developed by Kuto and Tsujikawa (2015) <span><span>[20]</span></span> and Wang et al. (2015) <span><span>[31]</span></span>. When spatial heterogeneity is introduced into the model, we obtain some sufficient conditions for the existence and non-existence of positive steady states. Our results demonstrate the existence of a critical value for the parameter <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> in this model such that below this critical value, spatial heterogeneity has little effect on the existence and non-existence of positive steady states, whereas significant changes occur once <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> exceeds the critical value.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"444 \",\"pages\":\"Article 113657\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625006849\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625006849","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文关注Kuto和Tsujikawa(2015)和Wang等人(2015)开发的具有扩散和平流的Lotka-Volterra竞争模型的稳态问题。当模型中引入空间异质性时,我们得到了正稳态存在和不存在的充分条件。结果表明,该模型参数b1存在一个临界值,在此临界值以下,空间异质性对正稳态的存在与否影响不大,而一旦b1超过临界值,则会发生显著变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the effects of spatial heterogeneity on positive steady states of Lotka-Volterra competition model with advection
This paper is concerned with the steady-state problem of a Lotka-Volterra competition model with diffusion and advection, developed by Kuto and Tsujikawa (2015) [20] and Wang et al. (2015) [31]. When spatial heterogeneity is introduced into the model, we obtain some sufficient conditions for the existence and non-existence of positive steady states. Our results demonstrate the existence of a critical value for the parameter b1 in this model such that below this critical value, spatial heterogeneity has little effect on the existence and non-existence of positive steady states, whereas significant changes occur once b1 exceeds the critical value.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信