氟化Ni3S2/Co9S8纳米棒阵列作为稳定海水电解的高效OER催化剂

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Qingyu Shi , Zhikun Xu , Xiaotian Sun , Shuangyan Lin , Lin Li
{"title":"氟化Ni3S2/Co9S8纳米棒阵列作为稳定海水电解的高效OER催化剂","authors":"Qingyu Shi ,&nbsp;Zhikun Xu ,&nbsp;Xiaotian Sun ,&nbsp;Shuangyan Lin ,&nbsp;Lin Li","doi":"10.1016/j.jallcom.2025.182649","DOIUrl":null,"url":null,"abstract":"<div><div>The development of high-performance non-precious electrocatalysts for seawater oxidation faces significant challenges from competing chlorine evolution and catalyst corrosion. Herein, we construct fluorine-doped Ni<sub>3</sub>S<sub>2</sub>/Co<sub>9</sub>S<sub>8</sub> nanorod arrays on nickel foam (F-Ni<sub>3</sub>S<sub>2</sub>/Co<sub>9</sub>S<sub>8</sub>) as a robust OER catalyst for alkaline seawater electrolysis. Experimental analyses reveal that fluorine doping effectively modulates the electronic structure of Ni/Co active centers, increases catalytically active sites, and enhances charge transfer kinetics, significantly boosting OER activity. Remarkably, F-Ni<sub>3</sub>S<sub>2</sub>/Co<sub>9</sub>S<sub>8</sub> achieves industrially relevant current densities of 1000 mA cm<sup>−2</sup> at low overpotentials of 345 mV (alkaline freshwater) and 407 mV (natural seawater). Importantly, it demonstrates excellent operational stability over 130 h in harsh alkaline seawater conditions, due to its superior chloride corrosion resistance. Furthermore, F-Ni<sub>3</sub>S<sub>2</sub>/Co<sub>9</sub>S<sub>8</sub> exhibits exceptional OER selectivity with a Faradaic efficiency of ∼95 % and no detectable hypochlorite formation. When configured in a full electrolyzer with Pt/C, the system requires only 1.74 V and 1.78 V to deliver 100 mA cm<sup>−2</sup> in freshwater and seawater electrolytes, respectively. This work provides valuable insights into fluorine-mediated catalytic enhancement and presents a promising strategy for developing efficient seawater electrolysis systems.</div></div>","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"1038 ","pages":"Article 182649"},"PeriodicalIF":6.3000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fluorine-engineered Ni3S2/Co9S8 nanorod arrays as high-efficiency OER catalyst for stable seawater electrolysis\",\"authors\":\"Qingyu Shi ,&nbsp;Zhikun Xu ,&nbsp;Xiaotian Sun ,&nbsp;Shuangyan Lin ,&nbsp;Lin Li\",\"doi\":\"10.1016/j.jallcom.2025.182649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The development of high-performance non-precious electrocatalysts for seawater oxidation faces significant challenges from competing chlorine evolution and catalyst corrosion. Herein, we construct fluorine-doped Ni<sub>3</sub>S<sub>2</sub>/Co<sub>9</sub>S<sub>8</sub> nanorod arrays on nickel foam (F-Ni<sub>3</sub>S<sub>2</sub>/Co<sub>9</sub>S<sub>8</sub>) as a robust OER catalyst for alkaline seawater electrolysis. Experimental analyses reveal that fluorine doping effectively modulates the electronic structure of Ni/Co active centers, increases catalytically active sites, and enhances charge transfer kinetics, significantly boosting OER activity. Remarkably, F-Ni<sub>3</sub>S<sub>2</sub>/Co<sub>9</sub>S<sub>8</sub> achieves industrially relevant current densities of 1000 mA cm<sup>−2</sup> at low overpotentials of 345 mV (alkaline freshwater) and 407 mV (natural seawater). Importantly, it demonstrates excellent operational stability over 130 h in harsh alkaline seawater conditions, due to its superior chloride corrosion resistance. Furthermore, F-Ni<sub>3</sub>S<sub>2</sub>/Co<sub>9</sub>S<sub>8</sub> exhibits exceptional OER selectivity with a Faradaic efficiency of ∼95 % and no detectable hypochlorite formation. When configured in a full electrolyzer with Pt/C, the system requires only 1.74 V and 1.78 V to deliver 100 mA cm<sup>−2</sup> in freshwater and seawater electrolytes, respectively. This work provides valuable insights into fluorine-mediated catalytic enhancement and presents a promising strategy for developing efficient seawater electrolysis systems.</div></div>\",\"PeriodicalId\":344,\"journal\":{\"name\":\"Journal of Alloys and Compounds\",\"volume\":\"1038 \",\"pages\":\"Article 182649\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alloys and Compounds\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925838825042100\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925838825042100","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

开发用于海水氧化的高性能非贵重电催化剂面临着氯析出和催化剂腐蚀竞争的重大挑战。本文在泡沫镍(F-Ni3S2/Co9S8)上构建了含氟掺杂Ni3S2/Co9S8纳米棒阵列,作为碱性海水电解的强力OER催化剂。实验分析表明,氟掺杂有效调节了Ni/Co活性中心的电子结构,增加了催化活性位点,增强了电荷转移动力学,显著提高了OER活性。值得注意的是,F-Ni3S2/Co9S8在345 mV(碱性淡水)和407 mV(天然海水)的低过电位下实现了工业相关的1000 mA cm-2电流密度。重要的是,在恶劣的碱性海水条件下,由于具有优异的抗氯化物腐蚀性,它在130小时内表现出出色的运行稳定性。此外,F-Ni3S2/Co9S8表现出优异的OER选择性,法拉第效率约为95%,没有检测到次氯酸盐的形成。当配置在Pt/C全电解槽时,系统只需要1.74 V和1.78 V,分别提供100 mA cm - 2的淡水和海水电解质。这项工作为氟介导的催化增强提供了有价值的见解,并为开发高效的海水电解系统提供了有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fluorine-engineered Ni3S2/Co9S8 nanorod arrays as high-efficiency OER catalyst for stable seawater electrolysis

Fluorine-engineered Ni3S2/Co9S8 nanorod arrays as high-efficiency OER catalyst for stable seawater electrolysis
The development of high-performance non-precious electrocatalysts for seawater oxidation faces significant challenges from competing chlorine evolution and catalyst corrosion. Herein, we construct fluorine-doped Ni3S2/Co9S8 nanorod arrays on nickel foam (F-Ni3S2/Co9S8) as a robust OER catalyst for alkaline seawater electrolysis. Experimental analyses reveal that fluorine doping effectively modulates the electronic structure of Ni/Co active centers, increases catalytically active sites, and enhances charge transfer kinetics, significantly boosting OER activity. Remarkably, F-Ni3S2/Co9S8 achieves industrially relevant current densities of 1000 mA cm−2 at low overpotentials of 345 mV (alkaline freshwater) and 407 mV (natural seawater). Importantly, it demonstrates excellent operational stability over 130 h in harsh alkaline seawater conditions, due to its superior chloride corrosion resistance. Furthermore, F-Ni3S2/Co9S8 exhibits exceptional OER selectivity with a Faradaic efficiency of ∼95 % and no detectable hypochlorite formation. When configured in a full electrolyzer with Pt/C, the system requires only 1.74 V and 1.78 V to deliver 100 mA cm−2 in freshwater and seawater electrolytes, respectively. This work provides valuable insights into fluorine-mediated catalytic enhancement and presents a promising strategy for developing efficient seawater electrolysis systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信