从视网膜图像中筛选慢性肾脏疾病和常见病理类型的无创模型

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Qianni Wu, Jianbo Li, Lanqin Zhao, Dong Liu, Jingyi Wen, Yunuo Wang, Yiqin Wang, Naya Huang, Lanping Jiang, Qinghua Liu, Hanming Lin, Pengxia Wan, Shicong Yang, Wenfang Chen, Hongjian Ye, Mohammed Haji Rashid Hassan, Ahmed Hassan Nur, Zefang Dai, Jie Guo, Shanshan Zhou, Jianwen Yu, Weixing Zhang, Wenben Chen, Ruiyang Li, Wai Cheng Iao, Juan-juan Feng, Yan Wang, Hua Hong, Peihong Yin, Qing Ye, Chao Xie, Min Zhu, Xiaoyi Liu, Yaozhong Kong, Jie Wang, Ruiying Ma, Yu Xiao, Guoguang Chen, Rongguo Fu, Yuhe Ke, Jasmine Ong Chiat Ling, Charumathi Sabanayagam, Daniel Shu Wei Ting, Kar Keung Cheng, Duoru Lin, Wei Chen, Haotian Lin
{"title":"从视网膜图像中筛选慢性肾脏疾病和常见病理类型的无创模型","authors":"Qianni Wu, Jianbo Li, Lanqin Zhao, Dong Liu, Jingyi Wen, Yunuo Wang, Yiqin Wang, Naya Huang, Lanping Jiang, Qinghua Liu, Hanming Lin, Pengxia Wan, Shicong Yang, Wenfang Chen, Hongjian Ye, Mohammed Haji Rashid Hassan, Ahmed Hassan Nur, Zefang Dai, Jie Guo, Shanshan Zhou, Jianwen Yu, Weixing Zhang, Wenben Chen, Ruiyang Li, Wai Cheng Iao, Juan-juan Feng, Yan Wang, Hua Hong, Peihong Yin, Qing Ye, Chao Xie, Min Zhu, Xiaoyi Liu, Yaozhong Kong, Jie Wang, Ruiying Ma, Yu Xiao, Guoguang Chen, Rongguo Fu, Yuhe Ke, Jasmine Ong Chiat Ling, Charumathi Sabanayagam, Daniel Shu Wei Ting, Kar Keung Cheng, Duoru Lin, Wei Chen, Haotian Lin","doi":"10.1038/s41467-025-62273-0","DOIUrl":null,"url":null,"abstract":"<p>Chronic kidney disease (CKD) is a global health challenge, but invasive renal biopsies, the gold standard for diagnosis and prognosis, are often clinically constrained. To address this, we developed the kidney intelligent diagnosis system (KIDS), a noninvasive model for renal biopsy prediction using 13,144 retinal images from 6773 participants. The KIDS achieves an area under the receiver operating characteristic curve (AUC) of 0.839–0.993 for CKD screening and accurately identifies the five most common pathological types (AUC: 0.790–0.932) in a multicenter and multi-ethnic validation, outperforming nephrologists by 26.98% in accuracy. Additionally, the KIDS further predicts disease progression based on pathological classification. Given its flexible strategy, the KIDS can be adapted to local conditions to provide a tailored tool for patients. This noninvasive model has the potential to improve CKD clinical management, particularly for those who are ineligible for biopsies.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"20 1","pages":"6962"},"PeriodicalIF":15.7000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A noninvasive model for chronic kidney disease screening and common pathological type identification from retinal images\",\"authors\":\"Qianni Wu, Jianbo Li, Lanqin Zhao, Dong Liu, Jingyi Wen, Yunuo Wang, Yiqin Wang, Naya Huang, Lanping Jiang, Qinghua Liu, Hanming Lin, Pengxia Wan, Shicong Yang, Wenfang Chen, Hongjian Ye, Mohammed Haji Rashid Hassan, Ahmed Hassan Nur, Zefang Dai, Jie Guo, Shanshan Zhou, Jianwen Yu, Weixing Zhang, Wenben Chen, Ruiyang Li, Wai Cheng Iao, Juan-juan Feng, Yan Wang, Hua Hong, Peihong Yin, Qing Ye, Chao Xie, Min Zhu, Xiaoyi Liu, Yaozhong Kong, Jie Wang, Ruiying Ma, Yu Xiao, Guoguang Chen, Rongguo Fu, Yuhe Ke, Jasmine Ong Chiat Ling, Charumathi Sabanayagam, Daniel Shu Wei Ting, Kar Keung Cheng, Duoru Lin, Wei Chen, Haotian Lin\",\"doi\":\"10.1038/s41467-025-62273-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Chronic kidney disease (CKD) is a global health challenge, but invasive renal biopsies, the gold standard for diagnosis and prognosis, are often clinically constrained. To address this, we developed the kidney intelligent diagnosis system (KIDS), a noninvasive model for renal biopsy prediction using 13,144 retinal images from 6773 participants. The KIDS achieves an area under the receiver operating characteristic curve (AUC) of 0.839–0.993 for CKD screening and accurately identifies the five most common pathological types (AUC: 0.790–0.932) in a multicenter and multi-ethnic validation, outperforming nephrologists by 26.98% in accuracy. Additionally, the KIDS further predicts disease progression based on pathological classification. Given its flexible strategy, the KIDS can be adapted to local conditions to provide a tailored tool for patients. This noninvasive model has the potential to improve CKD clinical management, particularly for those who are ineligible for biopsies.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"20 1\",\"pages\":\"6962\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-62273-0\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62273-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

慢性肾脏疾病(CKD)是一个全球性的健康挑战,但有创性肾活检作为诊断和预后的金标准,在临床上常常受到限制。为了解决这个问题,我们开发了肾脏智能诊断系统(KIDS),这是一个无创的肾脏活检预测模型,使用来自6773名参与者的13144张视网膜图像。KIDS在CKD筛查中的受试者工作特征曲线下面积(AUC)为0.839-0.993,并在多中心和多种族验证中准确识别出五种最常见的病理类型(AUC: 0.790-0.932),准确度比肾病学家高出26.98%。此外,KIDS还可以根据病理分类进一步预测疾病进展。鉴于其灵活的策略,KIDS可以根据当地情况进行调整,为患者提供量身定制的工具。这种无创模式有可能改善CKD的临床管理,特别是对那些没有资格进行活组织检查的患者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A noninvasive model for chronic kidney disease screening and common pathological type identification from retinal images

A noninvasive model for chronic kidney disease screening and common pathological type identification from retinal images

Chronic kidney disease (CKD) is a global health challenge, but invasive renal biopsies, the gold standard for diagnosis and prognosis, are often clinically constrained. To address this, we developed the kidney intelligent diagnosis system (KIDS), a noninvasive model for renal biopsy prediction using 13,144 retinal images from 6773 participants. The KIDS achieves an area under the receiver operating characteristic curve (AUC) of 0.839–0.993 for CKD screening and accurately identifies the five most common pathological types (AUC: 0.790–0.932) in a multicenter and multi-ethnic validation, outperforming nephrologists by 26.98% in accuracy. Additionally, the KIDS further predicts disease progression based on pathological classification. Given its flexible strategy, the KIDS can be adapted to local conditions to provide a tailored tool for patients. This noninvasive model has the potential to improve CKD clinical management, particularly for those who are ineligible for biopsies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信