合成后氮掺杂提高Zn2SnO4纳米结构光催化水电解性能。

IF 5.1 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nanoscale Pub Date : 2025-07-29 DOI:10.1039/D5NR01576F
Lokanath Mohapatra, Akshay Kumar Sonwane, Sonali Samal, Tushar Chauhan, Parveen Garg, Uday Deshpande, M. K. Tiwari and Ajay K. Kushwaha
{"title":"合成后氮掺杂提高Zn2SnO4纳米结构光催化水电解性能。","authors":"Lokanath Mohapatra, Akshay Kumar Sonwane, Sonali Samal, Tushar Chauhan, Parveen Garg, Uday Deshpande, M. K. Tiwari and Ajay K. Kushwaha","doi":"10.1039/D5NR01576F","DOIUrl":null,"url":null,"abstract":"<p >Nitrogen-doped Zn<small><sub>2</sub></small>SnO<small><sub>4</sub></small> nanostructures were developed <em>via</em> hydrothermal treatment. Urea (CH<small><sub>4</sub></small>N<small><sub>2</sub></small>O) was used as the nitrogen source to achieve post-growth nitrogen doping in Zn<small><sub>2</sub></small>SnO<small><sub>4</sub></small> nanostructures. Nitrogen doping resulted in morphological distortion. The elemental study proved that nitrogen concentration increased with an increase in the concentration of urea in the precursor solutions. The vibration modes corresponding to the Zn–N and Sn–N bonds confirmed the incorporation of nitrogen into the crystal lattice of Zn<small><sub>2</sub></small>SnO<small><sub>4</sub></small>. XPS analysis revealed that higher nitrogen doping concentrations led to the substitutional incorporation of nitrogen. Nitrogen doping in Zn<small><sub>2</sub></small>SnO<small><sub>4</sub></small> introduced impurity levels in the electronic band structure and reduced its optical band gap (from 2.7 eV to 2.4 eV). Consequently, the Zn<small><sub>2</sub></small>SnO<small><sub>4</sub></small> nanostructure with approximately 1.9 at% nitrogen showed the highest photocurrent density of 124 μA cm<small><sup>−2</sup></small> at 1.23 V <em>vs.</em> RHE, representing approximately 2.6-fold improvement in photocurrent compared to that of undoped Zn<small><sub>2</sub></small>SnO<small><sub>4</sub></small> nanostructures. Optimized nitrogen doping resulted in approximately 89% charge injection efficiency along with the lowest charge transfer resistance.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":" 32","pages":" 18852-18865"},"PeriodicalIF":5.1000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the photocatalytic water electrolysis performance of Zn2SnO4 nanostructures via post-synthesis nitrogen doping†\",\"authors\":\"Lokanath Mohapatra, Akshay Kumar Sonwane, Sonali Samal, Tushar Chauhan, Parveen Garg, Uday Deshpande, M. K. Tiwari and Ajay K. Kushwaha\",\"doi\":\"10.1039/D5NR01576F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Nitrogen-doped Zn<small><sub>2</sub></small>SnO<small><sub>4</sub></small> nanostructures were developed <em>via</em> hydrothermal treatment. Urea (CH<small><sub>4</sub></small>N<small><sub>2</sub></small>O) was used as the nitrogen source to achieve post-growth nitrogen doping in Zn<small><sub>2</sub></small>SnO<small><sub>4</sub></small> nanostructures. Nitrogen doping resulted in morphological distortion. The elemental study proved that nitrogen concentration increased with an increase in the concentration of urea in the precursor solutions. The vibration modes corresponding to the Zn–N and Sn–N bonds confirmed the incorporation of nitrogen into the crystal lattice of Zn<small><sub>2</sub></small>SnO<small><sub>4</sub></small>. XPS analysis revealed that higher nitrogen doping concentrations led to the substitutional incorporation of nitrogen. Nitrogen doping in Zn<small><sub>2</sub></small>SnO<small><sub>4</sub></small> introduced impurity levels in the electronic band structure and reduced its optical band gap (from 2.7 eV to 2.4 eV). Consequently, the Zn<small><sub>2</sub></small>SnO<small><sub>4</sub></small> nanostructure with approximately 1.9 at% nitrogen showed the highest photocurrent density of 124 μA cm<small><sup>−2</sup></small> at 1.23 V <em>vs.</em> RHE, representing approximately 2.6-fold improvement in photocurrent compared to that of undoped Zn<small><sub>2</sub></small>SnO<small><sub>4</sub></small> nanostructures. Optimized nitrogen doping resulted in approximately 89% charge injection efficiency along with the lowest charge transfer resistance.</p>\",\"PeriodicalId\":92,\"journal\":{\"name\":\"Nanoscale\",\"volume\":\" 32\",\"pages\":\" 18852-18865\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/nr/d5nr01576f\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nr/d5nr01576f","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

采用水热法制备了氮掺杂Zn2SnO4纳米结构。采用尿素(CH4N2O)作为氮源,在Zn2SnO4纳米结构中实现了生长后氮掺杂。氮掺杂导致形貌畸变。元素研究证明,氮浓度随前驱体溶液中尿素浓度的增加而增加。对应于Zn-N键和Sn-N键的振动模式证实了氮在Zn2SnO4晶格中的掺入。XPS分析表明,较高的氮掺杂浓度会导致氮的取代掺入。氮掺杂在Zn2SnO4中引入了电子能带结构中的杂质水平,减小了其光学带隙(从2.7 eV减小到2.4 eV)。结果表明,含氮量约为1.9 at%的Zn2SnO4纳米结构在1.23 V时的光电流密度最高,为124 μA cm-2,比未掺杂Zn2SnO4纳米结构的光电流提高了约2.6倍。优化后的氮掺杂可获得约89%的电荷注入效率和最低的电荷转移阻力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhancing the photocatalytic water electrolysis performance of Zn2SnO4 nanostructures via post-synthesis nitrogen doping†

Enhancing the photocatalytic water electrolysis performance of Zn2SnO4 nanostructures via post-synthesis nitrogen doping†

Nitrogen-doped Zn2SnO4 nanostructures were developed via hydrothermal treatment. Urea (CH4N2O) was used as the nitrogen source to achieve post-growth nitrogen doping in Zn2SnO4 nanostructures. Nitrogen doping resulted in morphological distortion. The elemental study proved that nitrogen concentration increased with an increase in the concentration of urea in the precursor solutions. The vibration modes corresponding to the Zn–N and Sn–N bonds confirmed the incorporation of nitrogen into the crystal lattice of Zn2SnO4. XPS analysis revealed that higher nitrogen doping concentrations led to the substitutional incorporation of nitrogen. Nitrogen doping in Zn2SnO4 introduced impurity levels in the electronic band structure and reduced its optical band gap (from 2.7 eV to 2.4 eV). Consequently, the Zn2SnO4 nanostructure with approximately 1.9 at% nitrogen showed the highest photocurrent density of 124 μA cm−2 at 1.23 V vs. RHE, representing approximately 2.6-fold improvement in photocurrent compared to that of undoped Zn2SnO4 nanostructures. Optimized nitrogen doping resulted in approximately 89% charge injection efficiency along with the lowest charge transfer resistance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信