钙钛矿太阳能电池中多维异质界面的时空工程研究

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-07-29 DOI:10.1021/acsnano.5c07973
Ziyue Feng,Mingrui He,Zhen Li,Xiaojing Hao
{"title":"钙钛矿太阳能电池中多维异质界面的时空工程研究","authors":"Ziyue Feng,Mingrui He,Zhen Li,Xiaojing Hao","doi":"10.1021/acsnano.5c07973","DOIUrl":null,"url":null,"abstract":"Perovskite solar cells offer promising cost-to-performance characteristics but face challenges from intrinsic chemical reactivity, which induces ion migration and defect formation, particularly at interfaces where nonradiative recombination limits efficiency and stability. This perspective discusses multidimensional interface engineering as a potential approach to address these trade-offs. We systematically evaluate passivation paradigms employing low-dimensional perovskites (2D, 1D, 0D) and related materials (e.g., antiperovskites, polymers, small molecules), analyzing their impact on defect mitigation, charge dynamics, and long-term stability under operational stress. Beyond simplified models, we consider theoretical frameworks involving adsorption dynamics (GCS), interfacial thermodynamics (Guggenheim), and reaction kinetics (Marcus/Gerischer) to support the rational design of stable interfaces. Recommendations for future interface design directions are presented. This work aims to support cross-dimensional heterointerface engineering in the development of durable and efficient perovskite photovoltaics.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"13 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Perspective on Spatiotemporal Engineering of Multidimensional Heterointerfaces in Perovskite Solar Cells.\",\"authors\":\"Ziyue Feng,Mingrui He,Zhen Li,Xiaojing Hao\",\"doi\":\"10.1021/acsnano.5c07973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Perovskite solar cells offer promising cost-to-performance characteristics but face challenges from intrinsic chemical reactivity, which induces ion migration and defect formation, particularly at interfaces where nonradiative recombination limits efficiency and stability. This perspective discusses multidimensional interface engineering as a potential approach to address these trade-offs. We systematically evaluate passivation paradigms employing low-dimensional perovskites (2D, 1D, 0D) and related materials (e.g., antiperovskites, polymers, small molecules), analyzing their impact on defect mitigation, charge dynamics, and long-term stability under operational stress. Beyond simplified models, we consider theoretical frameworks involving adsorption dynamics (GCS), interfacial thermodynamics (Guggenheim), and reaction kinetics (Marcus/Gerischer) to support the rational design of stable interfaces. Recommendations for future interface design directions are presented. This work aims to support cross-dimensional heterointerface engineering in the development of durable and efficient perovskite photovoltaics.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.5c07973\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c07973","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

钙钛矿太阳能电池具有性价比高的特点,但面临固有化学反应性的挑战,化学反应性会诱导离子迁移和缺陷形成,特别是在非辐射复合限制效率和稳定性的界面处。这个视角讨论了多维接口工程作为解决这些权衡的潜在方法。我们系统地评估了采用低维钙钛矿(2D、1D、0D)和相关材料(如反钙钛矿、聚合物、小分子)的钝化模式,分析了它们对缺陷缓解、电荷动力学和操作应力下长期稳定性的影响。除了简化模型,我们还考虑了吸附动力学(GCS)、界面热力学(Guggenheim)和反应动力学(Marcus/Gerischer)的理论框架,以支持稳定界面的合理设计。对今后的界面设计方向提出了建议。这项工作旨在支持跨维异质界面工程在开发耐用和高效的钙钛矿光伏电池中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Perspective on Spatiotemporal Engineering of Multidimensional Heterointerfaces in Perovskite Solar Cells.
Perovskite solar cells offer promising cost-to-performance characteristics but face challenges from intrinsic chemical reactivity, which induces ion migration and defect formation, particularly at interfaces where nonradiative recombination limits efficiency and stability. This perspective discusses multidimensional interface engineering as a potential approach to address these trade-offs. We systematically evaluate passivation paradigms employing low-dimensional perovskites (2D, 1D, 0D) and related materials (e.g., antiperovskites, polymers, small molecules), analyzing their impact on defect mitigation, charge dynamics, and long-term stability under operational stress. Beyond simplified models, we consider theoretical frameworks involving adsorption dynamics (GCS), interfacial thermodynamics (Guggenheim), and reaction kinetics (Marcus/Gerischer) to support the rational design of stable interfaces. Recommendations for future interface design directions are presented. This work aims to support cross-dimensional heterointerface engineering in the development of durable and efficient perovskite photovoltaics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信