Camille Ezran, Shixuan Liu, Stephen Chang, Jingsi Ming, Olga Botvinnik, Lolita Penland, Alexander Tarashansky, Antoine de Morree, Kyle J. Travaglini, Jia Zhao, Gefei Wang, Kazuteru Hasegawa, Hosu Sin, Rene Sit, Jennifer Okamoto, Rahul Sinha, Yue Zhang, Caitlin J. Karanewsky, Jozeph L. Pendleton, Maurizio Morri, Martine Perret, Fabienne Aujard, Lubert Stryer, Steven Artandi, Margaret T. Fuller, Irving L. Weissman, Thomas A. Rando, James E. Ferrell, Bo Wang, Iwijn De Vlaminck, Can Yang, Kerriann M. Casey, Megan A. Albertelli, Angela Oliveira Pisco, Jim Karkanias, Norma Neff, Angela Ruohao Wu, Stephen R. Quake, Mark A. Krasnow
{"title":"鼠狐猴的分子细胞图谱,一种新兴的模式灵长类动物","authors":"Camille Ezran, Shixuan Liu, Stephen Chang, Jingsi Ming, Olga Botvinnik, Lolita Penland, Alexander Tarashansky, Antoine de Morree, Kyle J. Travaglini, Jia Zhao, Gefei Wang, Kazuteru Hasegawa, Hosu Sin, Rene Sit, Jennifer Okamoto, Rahul Sinha, Yue Zhang, Caitlin J. Karanewsky, Jozeph L. Pendleton, Maurizio Morri, Martine Perret, Fabienne Aujard, Lubert Stryer, Steven Artandi, Margaret T. Fuller, Irving L. Weissman, Thomas A. Rando, James E. Ferrell, Bo Wang, Iwijn De Vlaminck, Can Yang, Kerriann M. Casey, Megan A. Albertelli, Angela Oliveira Pisco, Jim Karkanias, Norma Neff, Angela Ruohao Wu, Stephen R. Quake, Mark A. Krasnow","doi":"10.1038/s41586-025-09113-9","DOIUrl":null,"url":null,"abstract":"<p>Mouse lemurs are the smallest and fastest reproducing primates, as well as one of the most abundant, and they are emerging as a model organism for primate biology, behaviour, health and conservation. Although much has been learnt about their ecology and phylogeny in Madagascar and their physiology, little is known about their cellular and molecular biology. Here we used droplet-based and plate-based single-cell RNA sequencing to create Tabula Microcebus, a transcriptomic atlas of 226,000 cells from 27 mouse lemur organs opportunistically obtained from four donors clinically and histologically characterized. Using computational cell clustering, integration and expert cell annotation, we define and biologically organize more than 750 lemur molecular cell types and their full gene expression profiles. This includes cognates of most classical human cell types, including stem and progenitor cells, and differentiating cells along the developmental trajectories of spermatogenesis, haematopoiesis and other adult tissues. We also describe dozens of previously unidentified or sparsely characterized cell types. We globally compare expression profiles to define the molecular relationships of cell types across the body, and explore primate cell and gene expression evolution by comparing lemur transcriptomes to those of human, mouse and macaque. This reveals cell-type-specific patterns of primate specialization and many cell types and genes for which the mouse lemur provides a better human model than mouse<sup>1</sup>. The atlas provides a cellular and molecular foundation for studying this model primate and establishes a general approach for characterizing other emerging model organisms.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":"26 1","pages":""},"PeriodicalIF":48.5000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A molecular cell atlas of mouse lemur, an emerging model primate\",\"authors\":\"Camille Ezran, Shixuan Liu, Stephen Chang, Jingsi Ming, Olga Botvinnik, Lolita Penland, Alexander Tarashansky, Antoine de Morree, Kyle J. Travaglini, Jia Zhao, Gefei Wang, Kazuteru Hasegawa, Hosu Sin, Rene Sit, Jennifer Okamoto, Rahul Sinha, Yue Zhang, Caitlin J. Karanewsky, Jozeph L. Pendleton, Maurizio Morri, Martine Perret, Fabienne Aujard, Lubert Stryer, Steven Artandi, Margaret T. Fuller, Irving L. Weissman, Thomas A. Rando, James E. Ferrell, Bo Wang, Iwijn De Vlaminck, Can Yang, Kerriann M. Casey, Megan A. Albertelli, Angela Oliveira Pisco, Jim Karkanias, Norma Neff, Angela Ruohao Wu, Stephen R. Quake, Mark A. Krasnow\",\"doi\":\"10.1038/s41586-025-09113-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Mouse lemurs are the smallest and fastest reproducing primates, as well as one of the most abundant, and they are emerging as a model organism for primate biology, behaviour, health and conservation. Although much has been learnt about their ecology and phylogeny in Madagascar and their physiology, little is known about their cellular and molecular biology. Here we used droplet-based and plate-based single-cell RNA sequencing to create Tabula Microcebus, a transcriptomic atlas of 226,000 cells from 27 mouse lemur organs opportunistically obtained from four donors clinically and histologically characterized. Using computational cell clustering, integration and expert cell annotation, we define and biologically organize more than 750 lemur molecular cell types and their full gene expression profiles. This includes cognates of most classical human cell types, including stem and progenitor cells, and differentiating cells along the developmental trajectories of spermatogenesis, haematopoiesis and other adult tissues. We also describe dozens of previously unidentified or sparsely characterized cell types. We globally compare expression profiles to define the molecular relationships of cell types across the body, and explore primate cell and gene expression evolution by comparing lemur transcriptomes to those of human, mouse and macaque. This reveals cell-type-specific patterns of primate specialization and many cell types and genes for which the mouse lemur provides a better human model than mouse<sup>1</sup>. The atlas provides a cellular and molecular foundation for studying this model primate and establishes a general approach for characterizing other emerging model organisms.</p>\",\"PeriodicalId\":18787,\"journal\":{\"name\":\"Nature\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":48.5000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41586-025-09113-9\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-025-09113-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
A molecular cell atlas of mouse lemur, an emerging model primate
Mouse lemurs are the smallest and fastest reproducing primates, as well as one of the most abundant, and they are emerging as a model organism for primate biology, behaviour, health and conservation. Although much has been learnt about their ecology and phylogeny in Madagascar and their physiology, little is known about their cellular and molecular biology. Here we used droplet-based and plate-based single-cell RNA sequencing to create Tabula Microcebus, a transcriptomic atlas of 226,000 cells from 27 mouse lemur organs opportunistically obtained from four donors clinically and histologically characterized. Using computational cell clustering, integration and expert cell annotation, we define and biologically organize more than 750 lemur molecular cell types and their full gene expression profiles. This includes cognates of most classical human cell types, including stem and progenitor cells, and differentiating cells along the developmental trajectories of spermatogenesis, haematopoiesis and other adult tissues. We also describe dozens of previously unidentified or sparsely characterized cell types. We globally compare expression profiles to define the molecular relationships of cell types across the body, and explore primate cell and gene expression evolution by comparing lemur transcriptomes to those of human, mouse and macaque. This reveals cell-type-specific patterns of primate specialization and many cell types and genes for which the mouse lemur provides a better human model than mouse1. The atlas provides a cellular and molecular foundation for studying this model primate and establishes a general approach for characterizing other emerging model organisms.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.