人工智能智能体虚拟实验室设计新型冠状病毒纳米体

IF 48.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Nature Pub Date : 2025-07-29 DOI:10.1038/s41586-025-09442-9
Kyle Swanson, Wesley Wu, Nash L. Bulaong, John E. Pak, James Zou
{"title":"人工智能智能体虚拟实验室设计新型冠状病毒纳米体","authors":"Kyle Swanson, Wesley Wu, Nash L. Bulaong, John E. Pak, James Zou","doi":"10.1038/s41586-025-09442-9","DOIUrl":null,"url":null,"abstract":"<p>Science frequently benefits from teams of interdisciplinary researchers<sup>1–3</sup>, but many scientists do not have easy access to experts from multiple fields<sup>4,5</sup>. While large language models (LLMs) have shown an impressive ability to aid researchers across diverse domains, their uses have been largely limited to answering specific scientific questions rather than performing open-ended research<sup>6–11</sup>. Here, we expand the capabilities of LLMs for science by introducing the Virtual Lab, an AI-human research collaboration to perform sophisticated, interdisciplinary science research. The Virtual Lab consists of an LLM principal investigator agent guiding a team of LLM scientist agents through a series of research meetings, with a human researcher providing high-level feedback. We apply the Virtual Lab to design nanobody binders to recent variants of SARS-CoV-2. The Virtual Lab creates a novel computational nanobody design pipeline that incorporates ESM, AlphaFold-Multimer, and Rosetta and designs 92 new nanobodies. Experimental validation reveals a range of functional nanobodies with promising binding profiles across SARS-CoV-2 variants. In particular, two new nanobodies exhibit improved binding to the recent JN.1 or KP.3 variants<sup>12,13</sup> while maintaining strong binding to the ancestral viral spike protein, suggesting exciting candidates for further investigation. This demonstrates how the Virtual Lab can rapidly make an impactful, real-world scientific discovery.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":"37 1","pages":""},"PeriodicalIF":48.5000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Virtual Lab of AI agents designs new SARS-CoV-2 nanobodies\",\"authors\":\"Kyle Swanson, Wesley Wu, Nash L. Bulaong, John E. Pak, James Zou\",\"doi\":\"10.1038/s41586-025-09442-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Science frequently benefits from teams of interdisciplinary researchers<sup>1–3</sup>, but many scientists do not have easy access to experts from multiple fields<sup>4,5</sup>. While large language models (LLMs) have shown an impressive ability to aid researchers across diverse domains, their uses have been largely limited to answering specific scientific questions rather than performing open-ended research<sup>6–11</sup>. Here, we expand the capabilities of LLMs for science by introducing the Virtual Lab, an AI-human research collaboration to perform sophisticated, interdisciplinary science research. The Virtual Lab consists of an LLM principal investigator agent guiding a team of LLM scientist agents through a series of research meetings, with a human researcher providing high-level feedback. We apply the Virtual Lab to design nanobody binders to recent variants of SARS-CoV-2. The Virtual Lab creates a novel computational nanobody design pipeline that incorporates ESM, AlphaFold-Multimer, and Rosetta and designs 92 new nanobodies. Experimental validation reveals a range of functional nanobodies with promising binding profiles across SARS-CoV-2 variants. In particular, two new nanobodies exhibit improved binding to the recent JN.1 or KP.3 variants<sup>12,13</sup> while maintaining strong binding to the ancestral viral spike protein, suggesting exciting candidates for further investigation. This demonstrates how the Virtual Lab can rapidly make an impactful, real-world scientific discovery.</p>\",\"PeriodicalId\":18787,\"journal\":{\"name\":\"Nature\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":48.5000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41586-025-09442-9\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-025-09442-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

科学常常受益于跨学科的研究团队1 - 3,但许多科学家不容易接触到来自多个领域的专家4,5。虽然大型语言模型(llm)在帮助不同领域的研究人员方面表现出了令人印象深刻的能力,但它们的用途在很大程度上仅限于回答特定的科学问题,而不是进行开放式研究。在这里,我们通过引入虚拟实验室(Virtual Lab)来扩展法学硕士的能力,虚拟实验室是一种人工智能与人类的研究合作,可以进行复杂的跨学科科学研究。虚拟实验室由一名法学硕士首席研究员代理指导法学硕士科学家代理团队进行一系列研究会议,并由一名人类研究人员提供高水平的反馈。我们应用虚拟实验室来设计纳米体结合剂,以针对最近的SARS-CoV-2变体。虚拟实验室创建了一种新的计算纳米体设计管道,该管道集成了ESM、alphafold - multitimer和Rosetta,并设计了92种新的纳米体。实验验证揭示了一系列功能纳米体在SARS-CoV-2变体中具有良好的结合谱。特别是,两个新的纳米体表现出与最近的jn1或KP.3变异体的更好的结合12,13,同时保持与祖先病毒刺突蛋白的强结合,这表明了令人兴奋的候选物,值得进一步研究。这展示了虚拟实验室如何快速做出有影响力的、真实世界的科学发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Virtual Lab of AI agents designs new SARS-CoV-2 nanobodies

Science frequently benefits from teams of interdisciplinary researchers1–3, but many scientists do not have easy access to experts from multiple fields4,5. While large language models (LLMs) have shown an impressive ability to aid researchers across diverse domains, their uses have been largely limited to answering specific scientific questions rather than performing open-ended research6–11. Here, we expand the capabilities of LLMs for science by introducing the Virtual Lab, an AI-human research collaboration to perform sophisticated, interdisciplinary science research. The Virtual Lab consists of an LLM principal investigator agent guiding a team of LLM scientist agents through a series of research meetings, with a human researcher providing high-level feedback. We apply the Virtual Lab to design nanobody binders to recent variants of SARS-CoV-2. The Virtual Lab creates a novel computational nanobody design pipeline that incorporates ESM, AlphaFold-Multimer, and Rosetta and designs 92 new nanobodies. Experimental validation reveals a range of functional nanobodies with promising binding profiles across SARS-CoV-2 variants. In particular, two new nanobodies exhibit improved binding to the recent JN.1 or KP.3 variants12,13 while maintaining strong binding to the ancestral viral spike protein, suggesting exciting candidates for further investigation. This demonstrates how the Virtual Lab can rapidly make an impactful, real-world scientific discovery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature
Nature 综合性期刊-综合性期刊
CiteScore
90.00
自引率
1.20%
发文量
3652
审稿时长
3 months
期刊介绍: Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信