Yuanhao Qu, Kaixuan Huang, Ming Yin, Kanghong Zhan, Dyllan Liu, Di Yin, Henry C. Cousins, William A. Johnson, Xiaotong Wang, Mihir Shah, Russ B. Altman, Denny Zhou, Mengdi Wang, Le Cong
{"title":"CRISPR-GPT基因编辑实验的代理自动化","authors":"Yuanhao Qu, Kaixuan Huang, Ming Yin, Kanghong Zhan, Dyllan Liu, Di Yin, Henry C. Cousins, William A. Johnson, Xiaotong Wang, Mihir Shah, Russ B. Altman, Denny Zhou, Mengdi Wang, Le Cong","doi":"10.1038/s41551-025-01463-z","DOIUrl":null,"url":null,"abstract":"<p>Performing effective gene-editing experiments requires a deep understanding of both the CRISPR technology and the biological system involved. Meanwhile, despite their versatility and promise, large language models (LLMs) often lack domain-specific knowledge and struggle to accurately solve biological design problems. We present CRISPR-GPT, an LLM agent system to automate and enhance CRISPR-based gene-editing design and data analysis. CRISPR-GPT leverages the reasoning capabilities of LLMs for complex task decomposition, decision-making and interactive human–artificial intelligence (AI) collaboration. This system incorporates domain expertise, retrieval techniques, external tools and a specialized LLM fine tuned with open-forum discussions among scientists. CRISPR-GPT assists users in selecting CRISPR systems, experiment planning, designing guide RNAs, choosing delivery methods, drafting protocols, designing assays and analysing data. We showcase the potential of CRISPR-GPT by knocking out four genes with CRISPR-Cas12a in a human lung adenocarcinoma cell line and epigenetically activating two genes using CRISPR-dCas9 in a human melanoma cell line. CRISPR-GPT enables fully AI-guided gene-editing experiment design and analysis across different modalities, validating its effectiveness as an AI co-pilot in genome engineering.</p>","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"284 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CRISPR-GPT for agentic automation of gene-editing experiments\",\"authors\":\"Yuanhao Qu, Kaixuan Huang, Ming Yin, Kanghong Zhan, Dyllan Liu, Di Yin, Henry C. Cousins, William A. Johnson, Xiaotong Wang, Mihir Shah, Russ B. Altman, Denny Zhou, Mengdi Wang, Le Cong\",\"doi\":\"10.1038/s41551-025-01463-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Performing effective gene-editing experiments requires a deep understanding of both the CRISPR technology and the biological system involved. Meanwhile, despite their versatility and promise, large language models (LLMs) often lack domain-specific knowledge and struggle to accurately solve biological design problems. We present CRISPR-GPT, an LLM agent system to automate and enhance CRISPR-based gene-editing design and data analysis. CRISPR-GPT leverages the reasoning capabilities of LLMs for complex task decomposition, decision-making and interactive human–artificial intelligence (AI) collaboration. This system incorporates domain expertise, retrieval techniques, external tools and a specialized LLM fine tuned with open-forum discussions among scientists. CRISPR-GPT assists users in selecting CRISPR systems, experiment planning, designing guide RNAs, choosing delivery methods, drafting protocols, designing assays and analysing data. We showcase the potential of CRISPR-GPT by knocking out four genes with CRISPR-Cas12a in a human lung adenocarcinoma cell line and epigenetically activating two genes using CRISPR-dCas9 in a human melanoma cell line. CRISPR-GPT enables fully AI-guided gene-editing experiment design and analysis across different modalities, validating its effectiveness as an AI co-pilot in genome engineering.</p>\",\"PeriodicalId\":19063,\"journal\":{\"name\":\"Nature Biomedical Engineering\",\"volume\":\"284 1\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41551-025-01463-z\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41551-025-01463-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
CRISPR-GPT for agentic automation of gene-editing experiments
Performing effective gene-editing experiments requires a deep understanding of both the CRISPR technology and the biological system involved. Meanwhile, despite their versatility and promise, large language models (LLMs) often lack domain-specific knowledge and struggle to accurately solve biological design problems. We present CRISPR-GPT, an LLM agent system to automate and enhance CRISPR-based gene-editing design and data analysis. CRISPR-GPT leverages the reasoning capabilities of LLMs for complex task decomposition, decision-making and interactive human–artificial intelligence (AI) collaboration. This system incorporates domain expertise, retrieval techniques, external tools and a specialized LLM fine tuned with open-forum discussions among scientists. CRISPR-GPT assists users in selecting CRISPR systems, experiment planning, designing guide RNAs, choosing delivery methods, drafting protocols, designing assays and analysing data. We showcase the potential of CRISPR-GPT by knocking out four genes with CRISPR-Cas12a in a human lung adenocarcinoma cell line and epigenetically activating two genes using CRISPR-dCas9 in a human melanoma cell line. CRISPR-GPT enables fully AI-guided gene-editing experiment design and analysis across different modalities, validating its effectiveness as an AI co-pilot in genome engineering.
期刊介绍:
Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.