生物材料孔隙结构的自动分析。

IF 5.7
Nicola Rossberg, Simon Corrie, Lisbeth Grøndahl, Imanda Jayawardena
{"title":"生物材料孔隙结构的自动分析。","authors":"Nicola Rossberg, Simon Corrie, Lisbeth Grøndahl, Imanda Jayawardena","doi":"10.1039/d5tb00848d","DOIUrl":null,"url":null,"abstract":"<p><p>Quantitative assessment of pore size and morphology is crucial in biomaterials design and evaluation, particularly hydrogels and scaffolds used in tissue engineering and drug delivery. In recent years, a growing number of studies have proposed or adopted automated image analysis tools to evaluate pore characteristics; however, the absence of standardised protocols, validation criteria, and consistent reporting practices has limited reproducibility and cross-study comparability. This perspective, for the first time, examines recent trends in automated pore size analysis in biomaterials research, highlighting commonly used algorithms, their implementation in image-based workflows, and their ability to resolve pore geometries in disordered materials. We discuss the influence of imaging dimension, resolution, algorithm assumptions, and image pre-processing on outcomes and highlight common challenges such as over-segmentation, user bias, and the misidentification of irregularly shaped pores. By drawing on selected examples from the literature, we illustrate both the strengths and limitations of current approaches and emphasise the need for transparent, standardised methodologies in the field.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":"9377-9391"},"PeriodicalIF":5.7000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated analysis of pore structures in biomaterials.\",\"authors\":\"Nicola Rossberg, Simon Corrie, Lisbeth Grøndahl, Imanda Jayawardena\",\"doi\":\"10.1039/d5tb00848d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quantitative assessment of pore size and morphology is crucial in biomaterials design and evaluation, particularly hydrogels and scaffolds used in tissue engineering and drug delivery. In recent years, a growing number of studies have proposed or adopted automated image analysis tools to evaluate pore characteristics; however, the absence of standardised protocols, validation criteria, and consistent reporting practices has limited reproducibility and cross-study comparability. This perspective, for the first time, examines recent trends in automated pore size analysis in biomaterials research, highlighting commonly used algorithms, their implementation in image-based workflows, and their ability to resolve pore geometries in disordered materials. We discuss the influence of imaging dimension, resolution, algorithm assumptions, and image pre-processing on outcomes and highlight common challenges such as over-segmentation, user bias, and the misidentification of irregularly shaped pores. By drawing on selected examples from the literature, we illustrate both the strengths and limitations of current approaches and emphasise the need for transparent, standardised methodologies in the field.</p>\",\"PeriodicalId\":94089,\"journal\":{\"name\":\"Journal of materials chemistry. B\",\"volume\":\" \",\"pages\":\"9377-9391\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of materials chemistry. B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/d5tb00848d\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of materials chemistry. B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d5tb00848d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

孔隙大小和形态的定量评估在生物材料的设计和评估中至关重要,特别是用于组织工程和药物输送的水凝胶和支架。近年来,越来越多的研究提出或采用自动化图像分析工具来评价孔隙特征;然而,缺乏标准化的方案、验证标准和一致的报告实践限制了可重复性和交叉研究的可比性。这一视角首次探讨了生物材料研究中自动孔径分析的最新趋势,重点介绍了常用算法,它们在基于图像的工作流程中的实现,以及它们在无序材料中解析孔隙几何形状的能力。我们讨论了成像尺寸、分辨率、算法假设和图像预处理对结果的影响,并强调了诸如过度分割、用户偏见和不规则形状孔隙的错误识别等常见挑战。通过从文献中选择的例子,我们说明了当前方法的优点和局限性,并强调在该领域需要透明、标准化的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated analysis of pore structures in biomaterials.

Quantitative assessment of pore size and morphology is crucial in biomaterials design and evaluation, particularly hydrogels and scaffolds used in tissue engineering and drug delivery. In recent years, a growing number of studies have proposed or adopted automated image analysis tools to evaluate pore characteristics; however, the absence of standardised protocols, validation criteria, and consistent reporting practices has limited reproducibility and cross-study comparability. This perspective, for the first time, examines recent trends in automated pore size analysis in biomaterials research, highlighting commonly used algorithms, their implementation in image-based workflows, and their ability to resolve pore geometries in disordered materials. We discuss the influence of imaging dimension, resolution, algorithm assumptions, and image pre-processing on outcomes and highlight common challenges such as over-segmentation, user bias, and the misidentification of irregularly shaped pores. By drawing on selected examples from the literature, we illustrate both the strengths and limitations of current approaches and emphasise the need for transparent, standardised methodologies in the field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of materials chemistry. B
Journal of materials chemistry. B 化学科学, 工程与材料, 生命科学, 分析化学, 高分子组装与超分子结构, 高分子科学, 免疫生物学, 免疫学, 生化分析及生物传感, 组织工程学, 生物力学与组织工程学, 资源循环科学, 冶金与矿业, 生物医用高分子材料, 有机高分子材料, 金属材料的制备科学与跨学科应用基础, 金属材料, 样品前处理方法与技术, 有机分子功能材料化学, 有机化学
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信