CRISPR-Cas9 RNP在生物可还原纳米凝胶中的高效包封,并在模拟细胞溶胶的环境中释放。

IF 4.5 0 MATERIALS SCIENCE, MULTIDISCIPLINARY
Peter Westarp, Thorsten Keller, Jessica Brand, Sonja Horvat, Krystyna Albrecht, Chase Beisel, Juergen Groll
{"title":"CRISPR-Cas9 RNP在生物可还原纳米凝胶中的高效包封,并在模拟细胞溶胶的环境中释放。","authors":"Peter Westarp, Thorsten Keller, Jessica Brand, Sonja Horvat, Krystyna Albrecht, Chase Beisel, Juergen Groll","doi":"10.1186/s11671-025-04316-5","DOIUrl":null,"url":null,"abstract":"<p><p>CRISPR/Cas9-mediated programmable gene editing has disrupted the biotechnology industry since it was first described in 2012. Safe in vivo delivery is a key bottleneck for its therapeutic use. Viral vector-mediated delivery raises concerns due to immunogenicity, long-term expression, and genomic disruption. Delivery of pre-complexed ribonucleoprotein (RNP) reduces off-target effects, and recombinant Cas9 production is more cost-effective than viral vector synthesis. CRISPR-Cas RNPs do not possess intrinsic cell entry mechanisms, and physical delivery methods are confined to ex vivo editing, necessitating non-viral delivery approaches. Nanogels (NG) are biocompatible polymeric nanoparticles capable of entrapping proteins. Here, we report the first proof of principle that NGs from thiol-functionalized polyglycidol can entrap active RNPs with high efficiency (60 ± 2%). We call these particles CRISPR-Gels. A commercially available E. coli lysate for cell-free transcription and translation (TXTL) was used to mimic the intracellular reductive degradation of NGs while providing a real-time fluorescence readout of RNP activity. Degradation and RNP activity were observed within 30-90 min. The described TXTL assay can be utilized to evaluate the release of RNP in a cytosol-mimicking environment from redox-sensitive nanoparticles in a high-throughput and cost-effective way. Further studies are needed to assess the in vitro and in vivo performance of CRISPR-Gels.</p>","PeriodicalId":72828,"journal":{"name":"Discover nano","volume":"20 1","pages":"119"},"PeriodicalIF":4.5000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12297123/pdf/","citationCount":"0","resultStr":"{\"title\":\"Efficient encapsulation of CRISPR-Cas9 RNP in bioreducible nanogels and release in a cytosol-mimicking environment.\",\"authors\":\"Peter Westarp, Thorsten Keller, Jessica Brand, Sonja Horvat, Krystyna Albrecht, Chase Beisel, Juergen Groll\",\"doi\":\"10.1186/s11671-025-04316-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>CRISPR/Cas9-mediated programmable gene editing has disrupted the biotechnology industry since it was first described in 2012. Safe in vivo delivery is a key bottleneck for its therapeutic use. Viral vector-mediated delivery raises concerns due to immunogenicity, long-term expression, and genomic disruption. Delivery of pre-complexed ribonucleoprotein (RNP) reduces off-target effects, and recombinant Cas9 production is more cost-effective than viral vector synthesis. CRISPR-Cas RNPs do not possess intrinsic cell entry mechanisms, and physical delivery methods are confined to ex vivo editing, necessitating non-viral delivery approaches. Nanogels (NG) are biocompatible polymeric nanoparticles capable of entrapping proteins. Here, we report the first proof of principle that NGs from thiol-functionalized polyglycidol can entrap active RNPs with high efficiency (60 ± 2%). We call these particles CRISPR-Gels. A commercially available E. coli lysate for cell-free transcription and translation (TXTL) was used to mimic the intracellular reductive degradation of NGs while providing a real-time fluorescence readout of RNP activity. Degradation and RNP activity were observed within 30-90 min. The described TXTL assay can be utilized to evaluate the release of RNP in a cytosol-mimicking environment from redox-sensitive nanoparticles in a high-throughput and cost-effective way. Further studies are needed to assess the in vitro and in vivo performance of CRISPR-Gels.</p>\",\"PeriodicalId\":72828,\"journal\":{\"name\":\"Discover nano\",\"volume\":\"20 1\",\"pages\":\"119\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12297123/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discover nano\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s11671-025-04316-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover nano","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s11671-025-04316-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

CRISPR/ cas9介导的可编程基因编辑自2012年首次被描述以来,已经颠覆了生物技术行业。安全的体内给药是其治疗应用的关键瓶颈。由于免疫原性、长期表达和基因组破坏,病毒载体介导的递送引起了关注。预络合核糖核蛋白(RNP)的递送减少了脱靶效应,重组Cas9的生产比病毒载体合成更具成本效益。CRISPR-Cas RNPs不具有内在的细胞进入机制,物理传递方法仅限于体外编辑,因此需要非病毒传递方法。纳米凝胶(NG)是一种生物相容性聚合物纳米颗粒,能够包裹蛋白质。在这里,我们报告了第一个原理证明,巯基化聚甘油的NGs可以高效(60±2%)捕获活性RNPs。我们称这些微粒为crispr凝胶。一种市售的用于无细胞转录和翻译的大肠杆菌裂解液(TXTL)被用来模拟NGs的细胞内还原降解,同时提供RNP活性的实时荧光读数。在30-90分钟内观察到降解和RNP活性。所描述的TXTL分析可以用于评估氧化还原敏感纳米颗粒在模拟细胞溶胶环境中RNP的高通量和高成本效益的释放。需要进一步的研究来评估crispr - gel的体外和体内性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Efficient encapsulation of CRISPR-Cas9 RNP in bioreducible nanogels and release in a cytosol-mimicking environment.

Efficient encapsulation of CRISPR-Cas9 RNP in bioreducible nanogels and release in a cytosol-mimicking environment.

Efficient encapsulation of CRISPR-Cas9 RNP in bioreducible nanogels and release in a cytosol-mimicking environment.

Efficient encapsulation of CRISPR-Cas9 RNP in bioreducible nanogels and release in a cytosol-mimicking environment.

CRISPR/Cas9-mediated programmable gene editing has disrupted the biotechnology industry since it was first described in 2012. Safe in vivo delivery is a key bottleneck for its therapeutic use. Viral vector-mediated delivery raises concerns due to immunogenicity, long-term expression, and genomic disruption. Delivery of pre-complexed ribonucleoprotein (RNP) reduces off-target effects, and recombinant Cas9 production is more cost-effective than viral vector synthesis. CRISPR-Cas RNPs do not possess intrinsic cell entry mechanisms, and physical delivery methods are confined to ex vivo editing, necessitating non-viral delivery approaches. Nanogels (NG) are biocompatible polymeric nanoparticles capable of entrapping proteins. Here, we report the first proof of principle that NGs from thiol-functionalized polyglycidol can entrap active RNPs with high efficiency (60 ± 2%). We call these particles CRISPR-Gels. A commercially available E. coli lysate for cell-free transcription and translation (TXTL) was used to mimic the intracellular reductive degradation of NGs while providing a real-time fluorescence readout of RNP activity. Degradation and RNP activity were observed within 30-90 min. The described TXTL assay can be utilized to evaluate the release of RNP in a cytosol-mimicking environment from redox-sensitive nanoparticles in a high-throughput and cost-effective way. Further studies are needed to assess the in vitro and in vivo performance of CRISPR-Gels.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信