Lining Yu, Mengmeng Yin, Ruining Deng, Quan Liu, Tianyuan Yao, Can Cui, Junlin Guo, Yu Wang, Yaohong Wang, Shilin Zhao, Haichun Yang, Yuankai Huo
{"title":"Glo-In-One-v2:人类和小鼠组织病理学肾小球细胞、组织和病变的整体鉴定。","authors":"Lining Yu, Mengmeng Yin, Ruining Deng, Quan Liu, Tianyuan Yao, Can Cui, Junlin Guo, Yu Wang, Yaohong Wang, Shilin Zhao, Haichun Yang, Yuankai Huo","doi":"10.1117/1.JMI.12.6.061406","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Segmenting intraglomerular tissue and glomerular lesions traditionally depends on detailed morphological evaluations by expert nephropathologists, a labor-intensive process susceptible to interobserver variability. Our group previously developed the Glo-In-One toolkit for integrated glomerulus detection and segmentation. We leverage the Glo-In-One toolkit to version 2 (Glo-In-One-v2), which adds fine-grained segmentation capabilities. We curated 14 distinct labels spanning tissue regions, cells, and lesions across 23,529 annotated glomeruli from human and mouse histopathology data. To our knowledge, this dataset is among the largest of its kind to date.</p><p><strong>Approach: </strong>We present a single dynamic-head deep learning architecture for segmenting 14 classes within partially labeled images from human and mouse kidney pathology. The model was trained on data derived from 368 annotated kidney whole-slide images with five key intraglomerular tissue types and nine glomerular lesion types.</p><p><strong>Results: </strong>The glomerulus segmentation model achieved a decent performance compared with baselines and achieved a 76.5% average Dice similarity coefficient. In addition, transfer learning from rodent to human for the glomerular lesion segmentation model has enhanced the average segmentation accuracy across different types of lesions by more than 3%, as measured by Dice scores.</p><p><strong>Conclusions: </strong>We introduce a convolutional neural network for multiclass segmentation of intraglomerular tissue and lesions. The Glo-In-One-v2 model and pretrained weight are publicly available at https://github.com/hrlblab/Glo-In-One_v2.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 6","pages":"061406"},"PeriodicalIF":1.7000,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12303538/pdf/","citationCount":"0","resultStr":"{\"title\":\"Glo-In-One-v2: holistic identification of glomerular cells, tissues, and lesions in human and mouse histopathology.\",\"authors\":\"Lining Yu, Mengmeng Yin, Ruining Deng, Quan Liu, Tianyuan Yao, Can Cui, Junlin Guo, Yu Wang, Yaohong Wang, Shilin Zhao, Haichun Yang, Yuankai Huo\",\"doi\":\"10.1117/1.JMI.12.6.061406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Segmenting intraglomerular tissue and glomerular lesions traditionally depends on detailed morphological evaluations by expert nephropathologists, a labor-intensive process susceptible to interobserver variability. Our group previously developed the Glo-In-One toolkit for integrated glomerulus detection and segmentation. We leverage the Glo-In-One toolkit to version 2 (Glo-In-One-v2), which adds fine-grained segmentation capabilities. We curated 14 distinct labels spanning tissue regions, cells, and lesions across 23,529 annotated glomeruli from human and mouse histopathology data. To our knowledge, this dataset is among the largest of its kind to date.</p><p><strong>Approach: </strong>We present a single dynamic-head deep learning architecture for segmenting 14 classes within partially labeled images from human and mouse kidney pathology. The model was trained on data derived from 368 annotated kidney whole-slide images with five key intraglomerular tissue types and nine glomerular lesion types.</p><p><strong>Results: </strong>The glomerulus segmentation model achieved a decent performance compared with baselines and achieved a 76.5% average Dice similarity coefficient. In addition, transfer learning from rodent to human for the glomerular lesion segmentation model has enhanced the average segmentation accuracy across different types of lesions by more than 3%, as measured by Dice scores.</p><p><strong>Conclusions: </strong>We introduce a convolutional neural network for multiclass segmentation of intraglomerular tissue and lesions. The Glo-In-One-v2 model and pretrained weight are publicly available at https://github.com/hrlblab/Glo-In-One_v2.</p>\",\"PeriodicalId\":47707,\"journal\":{\"name\":\"Journal of Medical Imaging\",\"volume\":\"12 6\",\"pages\":\"061406\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12303538/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JMI.12.6.061406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.12.6.061406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
摘要
目的:分割肾小球内组织和肾小球病变传统上依赖于肾病理学专家详细的形态学评估,这是一个劳动密集型的过程,容易受到观察者之间的差异。我们的团队之前开发了glo - one工具包,用于综合肾小球检测和分割。我们将gloo - in - one工具包利用到版本2 (gloo - in - one -v2),它增加了细粒度分段功能。我们整理了14个不同的标签,跨越组织区域、细胞和病变,涵盖23,529个来自人和小鼠组织病理学数据的注释肾小球。据我们所知,这个数据集是迄今为止同类数据集中最大的。方法:我们提出了一个单一的动态头部深度学习架构,用于分割来自人类和小鼠肾脏病理的部分标记图像中的14个类。该模型的训练数据来自368张带注释的肾脏全片图像,其中包括5种关键肾小球内组织类型和9种肾小球病变类型。结果:与基线相比,肾小球分割模型取得了较好的性能,平均Dice相似系数达到76.5%。此外,对于肾小球病变分割模型,从啮齿动物到人类的迁移学习将不同类型病变的平均分割准确率提高了3%以上(以Dice分数衡量)。结论:采用卷积神经网络对肾小球内组织和病变进行多分类分割。gloin - one -v2模型和预训练权重可在https://github.com/hrlblab/Glo-In-One_v2上公开获取。
Glo-In-One-v2: holistic identification of glomerular cells, tissues, and lesions in human and mouse histopathology.
Purpose: Segmenting intraglomerular tissue and glomerular lesions traditionally depends on detailed morphological evaluations by expert nephropathologists, a labor-intensive process susceptible to interobserver variability. Our group previously developed the Glo-In-One toolkit for integrated glomerulus detection and segmentation. We leverage the Glo-In-One toolkit to version 2 (Glo-In-One-v2), which adds fine-grained segmentation capabilities. We curated 14 distinct labels spanning tissue regions, cells, and lesions across 23,529 annotated glomeruli from human and mouse histopathology data. To our knowledge, this dataset is among the largest of its kind to date.
Approach: We present a single dynamic-head deep learning architecture for segmenting 14 classes within partially labeled images from human and mouse kidney pathology. The model was trained on data derived from 368 annotated kidney whole-slide images with five key intraglomerular tissue types and nine glomerular lesion types.
Results: The glomerulus segmentation model achieved a decent performance compared with baselines and achieved a 76.5% average Dice similarity coefficient. In addition, transfer learning from rodent to human for the glomerular lesion segmentation model has enhanced the average segmentation accuracy across different types of lesions by more than 3%, as measured by Dice scores.
Conclusions: We introduce a convolutional neural network for multiclass segmentation of intraglomerular tissue and lesions. The Glo-In-One-v2 model and pretrained weight are publicly available at https://github.com/hrlblab/Glo-In-One_v2.
期刊介绍:
JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.