Chainey A Boroski, Jean-Christophe Domec, Christopher Maier, Sari Palmroth, Yi Wang, Ram Oren
{"title":"随着林分高度的增加,5种松树的叶片蒸腾量也呈相似的下降趋势。","authors":"Chainey A Boroski, Jean-Christophe Domec, Christopher Maier, Sari Palmroth, Yi Wang, Ram Oren","doi":"10.1093/treephys/tpaf093","DOIUrl":null,"url":null,"abstract":"<p><p>With increasing tree height, leaf transpiration (EL) is increasingly restricted by path-length resistance and gravity's discount to the driving force of xylem water flow. The effect of height on leaf transpiration is nearly always assessed using chronosequence data; however, in this long-term, dynamic study, we assessed increasing height's effects on EL using continuous monitoring of sap-flux for five Pinus species growing in a common-garden and experiencing a wide range of environmental conditions. We assessed how three drivers of EL-path-length (h), water-potential gradient (ΔΨ), and sapwood-to-leaf area ratio (AS:AL)-affect transpiration of the five Pinus species ranging five-fold in needle length by performing gas-exchange and water potential measurements, and monitoring tree biometrics, sap-flux, and soil and atmospheric conditions over five years at the Duke Forest, NC. With our methods controlling for all but the effect of tree hydraulics on transpiration, we found that EL, derived early in the study based on gas-exchange and later based on sap-flux measurements, were similar among species under both wet and dry soil moisture conditions. When soil moisture was not limiting, ΔΨ decreased across species with increasing needle length while whole-plant conductance (kplant) increased, leading to similar EL among species. Under soil drought, the trends with needle length of both variables became weaker as shorter-needle species showed a greater decrease in ΔΨ, while longer-needle species had a greater decline in kplant, again resulting in similar EL among species. Increasing h over time reduced EL similarly in all species, in part owing to similar annual minima of AS:AL among species and its invariance over a four-fold range in h. Controlling for non-hydraulic sources of variation showed that EL decreased with h similarly in five Pinus spp. of a wide range in leaf and crown characteristics.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leaf transpiration decreases similarly among five pine species as height increases over stand development.\",\"authors\":\"Chainey A Boroski, Jean-Christophe Domec, Christopher Maier, Sari Palmroth, Yi Wang, Ram Oren\",\"doi\":\"10.1093/treephys/tpaf093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With increasing tree height, leaf transpiration (EL) is increasingly restricted by path-length resistance and gravity's discount to the driving force of xylem water flow. The effect of height on leaf transpiration is nearly always assessed using chronosequence data; however, in this long-term, dynamic study, we assessed increasing height's effects on EL using continuous monitoring of sap-flux for five Pinus species growing in a common-garden and experiencing a wide range of environmental conditions. We assessed how three drivers of EL-path-length (h), water-potential gradient (ΔΨ), and sapwood-to-leaf area ratio (AS:AL)-affect transpiration of the five Pinus species ranging five-fold in needle length by performing gas-exchange and water potential measurements, and monitoring tree biometrics, sap-flux, and soil and atmospheric conditions over five years at the Duke Forest, NC. With our methods controlling for all but the effect of tree hydraulics on transpiration, we found that EL, derived early in the study based on gas-exchange and later based on sap-flux measurements, were similar among species under both wet and dry soil moisture conditions. When soil moisture was not limiting, ΔΨ decreased across species with increasing needle length while whole-plant conductance (kplant) increased, leading to similar EL among species. Under soil drought, the trends with needle length of both variables became weaker as shorter-needle species showed a greater decrease in ΔΨ, while longer-needle species had a greater decline in kplant, again resulting in similar EL among species. Increasing h over time reduced EL similarly in all species, in part owing to similar annual minima of AS:AL among species and its invariance over a four-fold range in h. Controlling for non-hydraulic sources of variation showed that EL decreased with h similarly in five Pinus spp. of a wide range in leaf and crown characteristics.</p>\",\"PeriodicalId\":23286,\"journal\":{\"name\":\"Tree physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tree physiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/treephys/tpaf093\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tree physiology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/treephys/tpaf093","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
Leaf transpiration decreases similarly among five pine species as height increases over stand development.
With increasing tree height, leaf transpiration (EL) is increasingly restricted by path-length resistance and gravity's discount to the driving force of xylem water flow. The effect of height on leaf transpiration is nearly always assessed using chronosequence data; however, in this long-term, dynamic study, we assessed increasing height's effects on EL using continuous monitoring of sap-flux for five Pinus species growing in a common-garden and experiencing a wide range of environmental conditions. We assessed how three drivers of EL-path-length (h), water-potential gradient (ΔΨ), and sapwood-to-leaf area ratio (AS:AL)-affect transpiration of the five Pinus species ranging five-fold in needle length by performing gas-exchange and water potential measurements, and monitoring tree biometrics, sap-flux, and soil and atmospheric conditions over five years at the Duke Forest, NC. With our methods controlling for all but the effect of tree hydraulics on transpiration, we found that EL, derived early in the study based on gas-exchange and later based on sap-flux measurements, were similar among species under both wet and dry soil moisture conditions. When soil moisture was not limiting, ΔΨ decreased across species with increasing needle length while whole-plant conductance (kplant) increased, leading to similar EL among species. Under soil drought, the trends with needle length of both variables became weaker as shorter-needle species showed a greater decrease in ΔΨ, while longer-needle species had a greater decline in kplant, again resulting in similar EL among species. Increasing h over time reduced EL similarly in all species, in part owing to similar annual minima of AS:AL among species and its invariance over a four-fold range in h. Controlling for non-hydraulic sources of variation showed that EL decreased with h similarly in five Pinus spp. of a wide range in leaf and crown characteristics.
期刊介绍:
Tree Physiology promotes research in a framework of hierarchically organized systems, measuring insight by the ability to link adjacent layers: thus, investigated tree physiology phenomenon should seek mechanistic explanation in finer-scale phenomena as well as seek significance in larger scale phenomena (Passioura 1979). A phenomenon not linked downscale is merely descriptive; an observation not linked upscale, might be trivial. Physiologists often refer qualitatively to processes at finer or coarser scale than the scale of their observation, and studies formally directed at three, or even two adjacent scales are rare. To emphasize the importance of relating mechanisms to coarser scale function, Tree Physiology will highlight papers doing so particularly well as feature papers.