基于深度学习的皮肤病分类方法。

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Merve Okumuş Sarı, Kübra Keser
{"title":"基于深度学习的皮肤病分类方法。","authors":"Merve Okumuş Sarı, Kübra Keser","doi":"10.1038/s41598-025-13275-x","DOIUrl":null,"url":null,"abstract":"<p><p>Skin diseases are one of the most common health problems that affect people of all ages around the world and significantly reduce the quality of life of individuals. Diseases of eczema, seborrheic dermatitis and skin cancer need to be diagnosed and correctly classified promptly. This issue, which is of great importance in terms of control and practical and effective treatment, is the study's starting point. The study included 693 individuals with eczema, 750 with skin cancer and 770 with seborrheic dermatitis. In the study, which focused on the classification of 3 different skin diseases, the Relief algorithm was used to increase the classification success and to ensure the selection of more meaningful qualities. With AlexNet with cross-validation, the accuracy rate was 89.39% for 80% training and 20% test rates. When SVM classification with the Relief algorithm was used for the same rates, the accuracy rate was 92.10%. In the analysis performed on the ISIC 2017 dataset, the accuracy rate is 89.16% for 80% training and 20% test rate. When the training and test rate was changed to 70% training and 30% test rate, the accuracy rate was 91.11%. It was observed that SVM classification with Relief's algorithm offers higher accuracy rates than other methods. The proposed model provides an original contribution to the literature, particularly through its integration of feature selection and a simplified architecture. This high success rate reveals that deep learning is an effective method in classifying skin diseases and the transfer learning process and will reduce the mortality rates due to cancer diseases with early and effective treatment while enabling skin diseases to be easily distinguished.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"27506"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12304466/pdf/","citationCount":"0","resultStr":"{\"title\":\"Classification of skin diseases with deep learning based approaches.\",\"authors\":\"Merve Okumuş Sarı, Kübra Keser\",\"doi\":\"10.1038/s41598-025-13275-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Skin diseases are one of the most common health problems that affect people of all ages around the world and significantly reduce the quality of life of individuals. Diseases of eczema, seborrheic dermatitis and skin cancer need to be diagnosed and correctly classified promptly. This issue, which is of great importance in terms of control and practical and effective treatment, is the study's starting point. The study included 693 individuals with eczema, 750 with skin cancer and 770 with seborrheic dermatitis. In the study, which focused on the classification of 3 different skin diseases, the Relief algorithm was used to increase the classification success and to ensure the selection of more meaningful qualities. With AlexNet with cross-validation, the accuracy rate was 89.39% for 80% training and 20% test rates. When SVM classification with the Relief algorithm was used for the same rates, the accuracy rate was 92.10%. In the analysis performed on the ISIC 2017 dataset, the accuracy rate is 89.16% for 80% training and 20% test rate. When the training and test rate was changed to 70% training and 30% test rate, the accuracy rate was 91.11%. It was observed that SVM classification with Relief's algorithm offers higher accuracy rates than other methods. The proposed model provides an original contribution to the literature, particularly through its integration of feature selection and a simplified architecture. This high success rate reveals that deep learning is an effective method in classifying skin diseases and the transfer learning process and will reduce the mortality rates due to cancer diseases with early and effective treatment while enabling skin diseases to be easily distinguished.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"27506\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12304466/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-13275-x\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-13275-x","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

皮肤病是最常见的健康问题之一,影响世界各地所有年龄段的人,并显著降低个人的生活质量。湿疹、脂溢性皮炎和皮肤癌等疾病需要及时诊断和正确分类。这一问题是本研究的出发点,对控制和实际有效的治疗具有重要意义。这项研究包括693名湿疹患者、750名皮肤癌患者和770名脂溢性皮炎患者。本研究针对3种不同的皮肤病进行分类,采用Relief算法来提高分类成功率,确保选择更有意义的品质。使用交叉验证的AlexNet,在80%的训练率和20%的测试率下,准确率为89.39%。采用Relief算法进行SVM分类时,准确率为92.10%。在ISIC 2017数据集上进行的分析中,训练率为80%,测试率为20%,准确率为89.16%。当训练测试率改为70%训练30%测试时,准确率为91.11%。观察发现,使用Relief算法进行SVM分类的准确率高于其他方法。提出的模型对文献做出了原创性贡献,特别是通过整合特征选择和简化的架构。如此高的成功率表明,深度学习是一种有效的皮肤病分类方法和迁移学习过程,通过早期有效的治疗,将降低癌症疾病的死亡率,同时使皮肤病易于区分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Classification of skin diseases with deep learning based approaches.

Classification of skin diseases with deep learning based approaches.

Classification of skin diseases with deep learning based approaches.

Classification of skin diseases with deep learning based approaches.

Skin diseases are one of the most common health problems that affect people of all ages around the world and significantly reduce the quality of life of individuals. Diseases of eczema, seborrheic dermatitis and skin cancer need to be diagnosed and correctly classified promptly. This issue, which is of great importance in terms of control and practical and effective treatment, is the study's starting point. The study included 693 individuals with eczema, 750 with skin cancer and 770 with seborrheic dermatitis. In the study, which focused on the classification of 3 different skin diseases, the Relief algorithm was used to increase the classification success and to ensure the selection of more meaningful qualities. With AlexNet with cross-validation, the accuracy rate was 89.39% for 80% training and 20% test rates. When SVM classification with the Relief algorithm was used for the same rates, the accuracy rate was 92.10%. In the analysis performed on the ISIC 2017 dataset, the accuracy rate is 89.16% for 80% training and 20% test rate. When the training and test rate was changed to 70% training and 30% test rate, the accuracy rate was 91.11%. It was observed that SVM classification with Relief's algorithm offers higher accuracy rates than other methods. The proposed model provides an original contribution to the literature, particularly through its integration of feature selection and a simplified architecture. This high success rate reveals that deep learning is an effective method in classifying skin diseases and the transfer learning process and will reduce the mortality rates due to cancer diseases with early and effective treatment while enabling skin diseases to be easily distinguished.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信