{"title":"持久配方的群体淬灭酶。","authors":"Reed Jacobson, Colton Castonguay, Mikael H Elias","doi":"10.1038/s41598-025-12623-1","DOIUrl":null,"url":null,"abstract":"<p><p>Enzymes with industrial potential often face limitations due to stability and longevity constraints. Thermostable quorum quenching lactonases are appealing biotechnology tools for controlling microbial pathogenicity and biofilm formation via the interference of quorum sensing. However, the effective formulation of these enzymes remains a challenge. Here, we evaluate the resistance and activity of two thermostable quorum quenching lactonase enzymes (SsoPox and GcL) across diverse formulations relevant to industrial applications. We systematically tested these enzymes with 16 different crop adjuvants (including oils, an anti-foaming agent, surfactants, deposition aids, a water conditioner, and a sticking agent) over a 210-day period, demonstrating broad compatibility except with oil-based adjuvants. Additionally, both enzymes maintained their activity when incorporated into five different coating bases (acrylic, silicone, polyurethane, epoxy, and latex) with activity levels varying according to polymer type. Further investigation of enzymatic acrylic coating characterized the effects of salt water and temperature on enzyme activity levels. Functionalized coatings maintained remarkable stability over 250 days in both wet and dry conditions. These findings establish a practical demonstration and framework for integrating quorum quenching lactonases into industrial materials and formulations, significantly advancing their potential for 'real-world' applications for microbial control across multiple sectors.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"27435"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12304125/pdf/","citationCount":"0","resultStr":"{\"title\":\"Durable formulations of quorum quenching enzymes.\",\"authors\":\"Reed Jacobson, Colton Castonguay, Mikael H Elias\",\"doi\":\"10.1038/s41598-025-12623-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Enzymes with industrial potential often face limitations due to stability and longevity constraints. Thermostable quorum quenching lactonases are appealing biotechnology tools for controlling microbial pathogenicity and biofilm formation via the interference of quorum sensing. However, the effective formulation of these enzymes remains a challenge. Here, we evaluate the resistance and activity of two thermostable quorum quenching lactonase enzymes (SsoPox and GcL) across diverse formulations relevant to industrial applications. We systematically tested these enzymes with 16 different crop adjuvants (including oils, an anti-foaming agent, surfactants, deposition aids, a water conditioner, and a sticking agent) over a 210-day period, demonstrating broad compatibility except with oil-based adjuvants. Additionally, both enzymes maintained their activity when incorporated into five different coating bases (acrylic, silicone, polyurethane, epoxy, and latex) with activity levels varying according to polymer type. Further investigation of enzymatic acrylic coating characterized the effects of salt water and temperature on enzyme activity levels. Functionalized coatings maintained remarkable stability over 250 days in both wet and dry conditions. These findings establish a practical demonstration and framework for integrating quorum quenching lactonases into industrial materials and formulations, significantly advancing their potential for 'real-world' applications for microbial control across multiple sectors.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"27435\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12304125/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-12623-1\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-12623-1","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Enzymes with industrial potential often face limitations due to stability and longevity constraints. Thermostable quorum quenching lactonases are appealing biotechnology tools for controlling microbial pathogenicity and biofilm formation via the interference of quorum sensing. However, the effective formulation of these enzymes remains a challenge. Here, we evaluate the resistance and activity of two thermostable quorum quenching lactonase enzymes (SsoPox and GcL) across diverse formulations relevant to industrial applications. We systematically tested these enzymes with 16 different crop adjuvants (including oils, an anti-foaming agent, surfactants, deposition aids, a water conditioner, and a sticking agent) over a 210-day period, demonstrating broad compatibility except with oil-based adjuvants. Additionally, both enzymes maintained their activity when incorporated into five different coating bases (acrylic, silicone, polyurethane, epoxy, and latex) with activity levels varying according to polymer type. Further investigation of enzymatic acrylic coating characterized the effects of salt water and temperature on enzyme activity levels. Functionalized coatings maintained remarkable stability over 250 days in both wet and dry conditions. These findings establish a practical demonstration and framework for integrating quorum quenching lactonases into industrial materials and formulations, significantly advancing their potential for 'real-world' applications for microbial control across multiple sectors.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.