Hachen Ali, Md Al-Amin Khan, Ali Akbar Shaikh, Adel Fahad Alrasheedi, Seyedali Mirjalili
{"title":"区间不确定性下销售价格和绿色水平依赖需求生产模型北极海雀优化算法的应用。","authors":"Hachen Ali, Md Al-Amin Khan, Ali Akbar Shaikh, Adel Fahad Alrasheedi, Seyedali Mirjalili","doi":"10.1038/s41598-025-09875-2","DOIUrl":null,"url":null,"abstract":"<p><p>In contemporary times, the environment is being progressively polluted by non-eco-friendly products from manufacturing sectors. Therefore, it is vital for individuals to be aware of the necessity of employing environmentally friendly items as a means to mitigate pollution. This consciousness, in return, drives an instant increase in the desire for environmentally friendly products, greatly improving their ecological sustainability. In this context, this study proposes a novel perishable inventory model that incorporates environmental attributes into demand and cost functions, which contributes to sustainable inventory management research. The maximum potential lifespan of a product is a crucial aspect of inventory management, especially when considering its suitability for reuse. One notable challenge in the connection between suppliers/manufacturers and merchants for products accessible during seasonal periods with high demand pertains to the issue of payment in advance. Integrating these multifaceted elements results in a perishable commodity inventory model characterized by a customer demand rate depending on the product's green level and price, an interval-valued holding cost, and a linearly time-dependent holding cost. A partial backlog of shortages with interval values is incorporated in this model. The associated optimization problem is characterized as a maximization problem, wherein the objective function exhibits values throughout an interval. To assess the accuracy and reliability of the proposed model, the Arctic Puffin Optimization (APO) algorithm is employed to analyze and solve a specific numerical illustration. Furthermore, seven other algorithms (Dandelion Optimizer (DO), Grey wolf optimizer (GWO), The whale optimization algorithm (WOA), Artificial electric field algorithm (AEFA), Harris hawks optimization (HHO), Multi-verse optimizer (MVO) and Slime mould algorithm (SMA)) are used to compare the obtained solution from APO. Quantitatively, the APO and DO algorithms provid the same solution for the given example. However, during the statistical test for review the performance of the algorithms, it is observed that APO is outperformed among all other algorithms. Subsequently, a post-optimality analysis examines the quantitative effects of changes made to different inventory parameters, which results in an insightful conclusion. This study not only contributes to the theoretical framework of perishable commodity inventory modeling but also provides practical implications for sustainable inventory management in response to environmental concerns.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"27437"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12304227/pdf/","citationCount":"0","resultStr":"{\"title\":\"An application of Arctic puffin optimization algorithm of a production model for selling price and green level dependent demand with interval uncertainty.\",\"authors\":\"Hachen Ali, Md Al-Amin Khan, Ali Akbar Shaikh, Adel Fahad Alrasheedi, Seyedali Mirjalili\",\"doi\":\"10.1038/s41598-025-09875-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In contemporary times, the environment is being progressively polluted by non-eco-friendly products from manufacturing sectors. Therefore, it is vital for individuals to be aware of the necessity of employing environmentally friendly items as a means to mitigate pollution. This consciousness, in return, drives an instant increase in the desire for environmentally friendly products, greatly improving their ecological sustainability. In this context, this study proposes a novel perishable inventory model that incorporates environmental attributes into demand and cost functions, which contributes to sustainable inventory management research. The maximum potential lifespan of a product is a crucial aspect of inventory management, especially when considering its suitability for reuse. One notable challenge in the connection between suppliers/manufacturers and merchants for products accessible during seasonal periods with high demand pertains to the issue of payment in advance. Integrating these multifaceted elements results in a perishable commodity inventory model characterized by a customer demand rate depending on the product's green level and price, an interval-valued holding cost, and a linearly time-dependent holding cost. A partial backlog of shortages with interval values is incorporated in this model. The associated optimization problem is characterized as a maximization problem, wherein the objective function exhibits values throughout an interval. To assess the accuracy and reliability of the proposed model, the Arctic Puffin Optimization (APO) algorithm is employed to analyze and solve a specific numerical illustration. Furthermore, seven other algorithms (Dandelion Optimizer (DO), Grey wolf optimizer (GWO), The whale optimization algorithm (WOA), Artificial electric field algorithm (AEFA), Harris hawks optimization (HHO), Multi-verse optimizer (MVO) and Slime mould algorithm (SMA)) are used to compare the obtained solution from APO. Quantitatively, the APO and DO algorithms provid the same solution for the given example. However, during the statistical test for review the performance of the algorithms, it is observed that APO is outperformed among all other algorithms. Subsequently, a post-optimality analysis examines the quantitative effects of changes made to different inventory parameters, which results in an insightful conclusion. This study not only contributes to the theoretical framework of perishable commodity inventory modeling but also provides practical implications for sustainable inventory management in response to environmental concerns.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"27437\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12304227/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-09875-2\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-09875-2","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
An application of Arctic puffin optimization algorithm of a production model for selling price and green level dependent demand with interval uncertainty.
In contemporary times, the environment is being progressively polluted by non-eco-friendly products from manufacturing sectors. Therefore, it is vital for individuals to be aware of the necessity of employing environmentally friendly items as a means to mitigate pollution. This consciousness, in return, drives an instant increase in the desire for environmentally friendly products, greatly improving their ecological sustainability. In this context, this study proposes a novel perishable inventory model that incorporates environmental attributes into demand and cost functions, which contributes to sustainable inventory management research. The maximum potential lifespan of a product is a crucial aspect of inventory management, especially when considering its suitability for reuse. One notable challenge in the connection between suppliers/manufacturers and merchants for products accessible during seasonal periods with high demand pertains to the issue of payment in advance. Integrating these multifaceted elements results in a perishable commodity inventory model characterized by a customer demand rate depending on the product's green level and price, an interval-valued holding cost, and a linearly time-dependent holding cost. A partial backlog of shortages with interval values is incorporated in this model. The associated optimization problem is characterized as a maximization problem, wherein the objective function exhibits values throughout an interval. To assess the accuracy and reliability of the proposed model, the Arctic Puffin Optimization (APO) algorithm is employed to analyze and solve a specific numerical illustration. Furthermore, seven other algorithms (Dandelion Optimizer (DO), Grey wolf optimizer (GWO), The whale optimization algorithm (WOA), Artificial electric field algorithm (AEFA), Harris hawks optimization (HHO), Multi-verse optimizer (MVO) and Slime mould algorithm (SMA)) are used to compare the obtained solution from APO. Quantitatively, the APO and DO algorithms provid the same solution for the given example. However, during the statistical test for review the performance of the algorithms, it is observed that APO is outperformed among all other algorithms. Subsequently, a post-optimality analysis examines the quantitative effects of changes made to different inventory parameters, which results in an insightful conclusion. This study not only contributes to the theoretical framework of perishable commodity inventory modeling but also provides practical implications for sustainable inventory management in response to environmental concerns.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.