Adil El Mertahi, Hind Ezzine, Samira Douzi, Khadija Douzi
{"title":"智能手机图像中人工智能驱动的皮肤癌检测:使用ViT、自适应阈值、黑帽变换和XGBoost的混合模型。","authors":"Adil El Mertahi, Hind Ezzine, Samira Douzi, Khadija Douzi","doi":"10.1371/journal.pone.0328402","DOIUrl":null,"url":null,"abstract":"<p><p>Skin cancer is a significant global public health issue, with millions of new cases identified each year. Recent breakthroughs in artificial intelligence, especially deep learning, possess considerable potential to enhance the accuracy and efficiency of screening. This study proposes an approach that employs smartphone images, which are preprocessed using adaptive learning and Black-Hat transformation. ViT is utilized for feature extraction, and a stacking model is constructed employing these features in conjunction with image-related variables, like patient age and sex, for final classification. The model's efficacy in identifying cancer-associated skin diseases was evaluated across six categories of skin lesions: actinic keratosis, basal cell carcinoma, melanoma, nevus, squamous cell carcinoma, and seborrheic keratosis. The suggested model attained an overall accuracy of 97.61%, with a PVV of 96.88%, a recall of 97.63%, and an F1 score of 97.19%, so illustrating its efficacy in detecting malignant skin lesions. This method could greatly aid dermatologists by enhancing diagnostic sensitivity and specificity, reducing delays in identifying the most suspicious lesions, and ultimately reaching more patients in need of timely screenings and patient care, thus saving lives.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 7","pages":"e0328402"},"PeriodicalIF":2.6000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12303293/pdf/","citationCount":"0","resultStr":"{\"title\":\"AI-driven skin cancer detection from smartphone images: A hybrid model using ViT, adaptive thresholding, black-hat transformation, and XGBoost.\",\"authors\":\"Adil El Mertahi, Hind Ezzine, Samira Douzi, Khadija Douzi\",\"doi\":\"10.1371/journal.pone.0328402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Skin cancer is a significant global public health issue, with millions of new cases identified each year. Recent breakthroughs in artificial intelligence, especially deep learning, possess considerable potential to enhance the accuracy and efficiency of screening. This study proposes an approach that employs smartphone images, which are preprocessed using adaptive learning and Black-Hat transformation. ViT is utilized for feature extraction, and a stacking model is constructed employing these features in conjunction with image-related variables, like patient age and sex, for final classification. The model's efficacy in identifying cancer-associated skin diseases was evaluated across six categories of skin lesions: actinic keratosis, basal cell carcinoma, melanoma, nevus, squamous cell carcinoma, and seborrheic keratosis. The suggested model attained an overall accuracy of 97.61%, with a PVV of 96.88%, a recall of 97.63%, and an F1 score of 97.19%, so illustrating its efficacy in detecting malignant skin lesions. This method could greatly aid dermatologists by enhancing diagnostic sensitivity and specificity, reducing delays in identifying the most suspicious lesions, and ultimately reaching more patients in need of timely screenings and patient care, thus saving lives.</p>\",\"PeriodicalId\":20189,\"journal\":{\"name\":\"PLoS ONE\",\"volume\":\"20 7\",\"pages\":\"e0328402\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12303293/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS ONE\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pone.0328402\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0328402","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
AI-driven skin cancer detection from smartphone images: A hybrid model using ViT, adaptive thresholding, black-hat transformation, and XGBoost.
Skin cancer is a significant global public health issue, with millions of new cases identified each year. Recent breakthroughs in artificial intelligence, especially deep learning, possess considerable potential to enhance the accuracy and efficiency of screening. This study proposes an approach that employs smartphone images, which are preprocessed using adaptive learning and Black-Hat transformation. ViT is utilized for feature extraction, and a stacking model is constructed employing these features in conjunction with image-related variables, like patient age and sex, for final classification. The model's efficacy in identifying cancer-associated skin diseases was evaluated across six categories of skin lesions: actinic keratosis, basal cell carcinoma, melanoma, nevus, squamous cell carcinoma, and seborrheic keratosis. The suggested model attained an overall accuracy of 97.61%, with a PVV of 96.88%, a recall of 97.63%, and an F1 score of 97.19%, so illustrating its efficacy in detecting malignant skin lesions. This method could greatly aid dermatologists by enhancing diagnostic sensitivity and specificity, reducing delays in identifying the most suspicious lesions, and ultimately reaching more patients in need of timely screenings and patient care, thus saving lives.
期刊介绍:
PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides:
* Open-access—freely accessible online, authors retain copyright
* Fast publication times
* Peer review by expert, practicing researchers
* Post-publication tools to indicate quality and impact
* Community-based dialogue on articles
* Worldwide media coverage