{"title":"原yonis baylis蛔虫蛋白磷酸化网络的磷酸化蛋白质组学分析。","authors":"Qin Meng, Zhikang Li, Qiguan Qiu, Shuyu Chen, Haiyan Gong, Xiaoruo Tan, Xiaoheng Liu, Zhaoguo Chen, Wei Liu","doi":"10.1186/s13071-025-06949-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Baylisascaris procyonis is an intestinal ascarid worm that parasitizes in raccoons and causes fatal neural, visceral, and ocular larva migrans in humans. Phosphorylated proteins and protein kinases have been studied as vaccine and drug target candidates against parasitic infections. However, no data are available on protein phosphorylation in the raccoon roundworm.</p><p><strong>Methods: </strong>In this study, the entire proteome of adult B. procyonis was enzymatically digested. Then, phosphopeptides were enriched using immobilized metal affinity chromatography (IMAC) and analyzed by liquid chromatography-mass spectrometry (LC-MS/MS).</p><p><strong>Results: </strong>Our phosphoproteome analysis displayed 854 unique phosphorylation sites mapped to 450 proteins in B. procyonis (3308 phosphopeptides total). The annotated phosphoproteins were associated with various biological processes, including cytoskeletal remodeling, supramolecular complex assembly, and developmental regulation. The phosphopeptide functional enrichment revealed that B. procyonis phosphoproteins were mostly involved in the cytoskeleton cellular compartment, protein binding molecular function, and multiple biological processes, including regulating supramolecular fiber and cytoskeleton organization and assembling cellular protein-containing complexes and organelles. The significantly enriched pathways of phosphoproteins included the insulin signaling pathway, tight junction, endocytosis, longevity-regulating, glycolysis/gluconeogenesis, and apelin signaling pathways. Domain analysis revealed that the Src homology 3 domain was significantly enriched.</p><p><strong>Conclusions: </strong>This study presents the first phosphoproteomic landscape of B. procyonis, elucidating phosphorylation-mediated regulation of cytoskeletal dynamics, host interaction pathways, and metabolic adaptations. The identified 450 phosphoproteins and enriched functional domains establish a foundation for targeting conserved mechanisms critical to B. procyonis survival.</p>","PeriodicalId":19793,"journal":{"name":"Parasites & Vectors","volume":"18 1","pages":"307"},"PeriodicalIF":3.5000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12305901/pdf/","citationCount":"0","resultStr":"{\"title\":\"Protein phosphorylation networks in Baylisascaris procyonis revealed by phosphoproteomic analysis.\",\"authors\":\"Qin Meng, Zhikang Li, Qiguan Qiu, Shuyu Chen, Haiyan Gong, Xiaoruo Tan, Xiaoheng Liu, Zhaoguo Chen, Wei Liu\",\"doi\":\"10.1186/s13071-025-06949-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Baylisascaris procyonis is an intestinal ascarid worm that parasitizes in raccoons and causes fatal neural, visceral, and ocular larva migrans in humans. Phosphorylated proteins and protein kinases have been studied as vaccine and drug target candidates against parasitic infections. However, no data are available on protein phosphorylation in the raccoon roundworm.</p><p><strong>Methods: </strong>In this study, the entire proteome of adult B. procyonis was enzymatically digested. Then, phosphopeptides were enriched using immobilized metal affinity chromatography (IMAC) and analyzed by liquid chromatography-mass spectrometry (LC-MS/MS).</p><p><strong>Results: </strong>Our phosphoproteome analysis displayed 854 unique phosphorylation sites mapped to 450 proteins in B. procyonis (3308 phosphopeptides total). The annotated phosphoproteins were associated with various biological processes, including cytoskeletal remodeling, supramolecular complex assembly, and developmental regulation. The phosphopeptide functional enrichment revealed that B. procyonis phosphoproteins were mostly involved in the cytoskeleton cellular compartment, protein binding molecular function, and multiple biological processes, including regulating supramolecular fiber and cytoskeleton organization and assembling cellular protein-containing complexes and organelles. The significantly enriched pathways of phosphoproteins included the insulin signaling pathway, tight junction, endocytosis, longevity-regulating, glycolysis/gluconeogenesis, and apelin signaling pathways. Domain analysis revealed that the Src homology 3 domain was significantly enriched.</p><p><strong>Conclusions: </strong>This study presents the first phosphoproteomic landscape of B. procyonis, elucidating phosphorylation-mediated regulation of cytoskeletal dynamics, host interaction pathways, and metabolic adaptations. The identified 450 phosphoproteins and enriched functional domains establish a foundation for targeting conserved mechanisms critical to B. procyonis survival.</p>\",\"PeriodicalId\":19793,\"journal\":{\"name\":\"Parasites & Vectors\",\"volume\":\"18 1\",\"pages\":\"307\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12305901/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parasites & Vectors\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13071-025-06949-y\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PARASITOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parasites & Vectors","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13071-025-06949-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PARASITOLOGY","Score":null,"Total":0}
Protein phosphorylation networks in Baylisascaris procyonis revealed by phosphoproteomic analysis.
Background: Baylisascaris procyonis is an intestinal ascarid worm that parasitizes in raccoons and causes fatal neural, visceral, and ocular larva migrans in humans. Phosphorylated proteins and protein kinases have been studied as vaccine and drug target candidates against parasitic infections. However, no data are available on protein phosphorylation in the raccoon roundworm.
Methods: In this study, the entire proteome of adult B. procyonis was enzymatically digested. Then, phosphopeptides were enriched using immobilized metal affinity chromatography (IMAC) and analyzed by liquid chromatography-mass spectrometry (LC-MS/MS).
Results: Our phosphoproteome analysis displayed 854 unique phosphorylation sites mapped to 450 proteins in B. procyonis (3308 phosphopeptides total). The annotated phosphoproteins were associated with various biological processes, including cytoskeletal remodeling, supramolecular complex assembly, and developmental regulation. The phosphopeptide functional enrichment revealed that B. procyonis phosphoproteins were mostly involved in the cytoskeleton cellular compartment, protein binding molecular function, and multiple biological processes, including regulating supramolecular fiber and cytoskeleton organization and assembling cellular protein-containing complexes and organelles. The significantly enriched pathways of phosphoproteins included the insulin signaling pathway, tight junction, endocytosis, longevity-regulating, glycolysis/gluconeogenesis, and apelin signaling pathways. Domain analysis revealed that the Src homology 3 domain was significantly enriched.
Conclusions: This study presents the first phosphoproteomic landscape of B. procyonis, elucidating phosphorylation-mediated regulation of cytoskeletal dynamics, host interaction pathways, and metabolic adaptations. The identified 450 phosphoproteins and enriched functional domains establish a foundation for targeting conserved mechanisms critical to B. procyonis survival.
期刊介绍:
Parasites & Vectors is an open access, peer-reviewed online journal dealing with the biology of parasites, parasitic diseases, intermediate hosts, vectors and vector-borne pathogens. Manuscripts published in this journal will be available to all worldwide, with no barriers to access, immediately following acceptance. However, authors retain the copyright of their material and may use it, or distribute it, as they wish.
Manuscripts on all aspects of the basic and applied biology of parasites, intermediate hosts, vectors and vector-borne pathogens will be considered. In addition to the traditional and well-established areas of science in these fields, we also aim to provide a vehicle for publication of the rapidly developing resources and technology in parasite, intermediate host and vector genomics and their impacts on biological research. We are able to publish large datasets and extensive results, frequently associated with genomic and post-genomic technologies, which are not readily accommodated in traditional journals. Manuscripts addressing broader issues, for example economics, social sciences and global climate change in relation to parasites, vectors and disease control, are also welcomed.