GeneAgent:使用域数据库进行基因集分析的自我验证语言代理。

IF 32.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Zhizheng Wang, Qiao Jin, Chih-Hsuan Wei, Shubo Tian, Po-Ting Lai, Qingqing Zhu, Chi-Ping Day, Christina Ross, Robert Leaman, Zhiyong Lu
{"title":"GeneAgent:使用域数据库进行基因集分析的自我验证语言代理。","authors":"Zhizheng Wang, Qiao Jin, Chih-Hsuan Wei, Shubo Tian, Po-Ting Lai, Qingqing Zhu, Chi-Ping Day, Christina Ross, Robert Leaman, Zhiyong Lu","doi":"10.1038/s41592-025-02748-6","DOIUrl":null,"url":null,"abstract":"Gene-set analysis seeks to identify the biological mechanisms underlying groups of genes with shared functions. Large language models (LLMs) have recently shown promise in generating functional descriptions for input gene sets but may produce factually incorrect statements, commonly referred to as hallucinations in LLMs. Here we present GeneAgent, an LLM-based AI agent for gene-set analysis that reduces hallucinations by autonomously interacting with biological databases to verify its own output. Evaluation of 1,106 gene sets collected from different sources demonstrates that GeneAgent is consistently more accurate than GPT-4 by a significant margin. We further applied GeneAgent to seven novel gene sets derived from mouse B2905 melanoma cell lines. Expert review confirmed that GeneAgent produces more relevant and comprehensive functional descriptions than GPT-4, providing valuable insights into gene functions and expediting knowledge discovery. GeneAgent is a language agent using large language models and self-verification to improve gene-set function annotation.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"22 8","pages":"1677-1685"},"PeriodicalIF":32.1000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12328209/pdf/","citationCount":"0","resultStr":"{\"title\":\"GeneAgent: self-verification language agent for gene-set analysis using domain databases\",\"authors\":\"Zhizheng Wang, Qiao Jin, Chih-Hsuan Wei, Shubo Tian, Po-Ting Lai, Qingqing Zhu, Chi-Ping Day, Christina Ross, Robert Leaman, Zhiyong Lu\",\"doi\":\"10.1038/s41592-025-02748-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gene-set analysis seeks to identify the biological mechanisms underlying groups of genes with shared functions. Large language models (LLMs) have recently shown promise in generating functional descriptions for input gene sets but may produce factually incorrect statements, commonly referred to as hallucinations in LLMs. Here we present GeneAgent, an LLM-based AI agent for gene-set analysis that reduces hallucinations by autonomously interacting with biological databases to verify its own output. Evaluation of 1,106 gene sets collected from different sources demonstrates that GeneAgent is consistently more accurate than GPT-4 by a significant margin. We further applied GeneAgent to seven novel gene sets derived from mouse B2905 melanoma cell lines. Expert review confirmed that GeneAgent produces more relevant and comprehensive functional descriptions than GPT-4, providing valuable insights into gene functions and expediting knowledge discovery. GeneAgent is a language agent using large language models and self-verification to improve gene-set function annotation.\",\"PeriodicalId\":18981,\"journal\":{\"name\":\"Nature Methods\",\"volume\":\"22 8\",\"pages\":\"1677-1685\"},\"PeriodicalIF\":32.1000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12328209/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41592-025-02748-6\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41592-025-02748-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

基因集分析旨在确定具有共享功能的基因群的生物学机制。大型语言模型(llm)最近在为输入基因集生成功能描述方面表现出了希望,但可能会产生事实错误的陈述,在llm中通常被称为幻觉。在这里,我们介绍了GeneAgent,一个基于llm的人工智能代理,用于基因集分析,通过自主与生物数据库交互来验证自己的输出来减少幻觉。对从不同来源收集的1106个基因集的评估表明,GeneAgent始终比GPT-4更准确。我们进一步将GeneAgent应用于来自小鼠B2905黑色素瘤细胞系的七个新基因集。专家评审证实,GeneAgent比GPT-4提供了更相关和全面的功能描述,为基因功能提供了有价值的见解,加快了知识发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

GeneAgent: self-verification language agent for gene-set analysis using domain databases

GeneAgent: self-verification language agent for gene-set analysis using domain databases
Gene-set analysis seeks to identify the biological mechanisms underlying groups of genes with shared functions. Large language models (LLMs) have recently shown promise in generating functional descriptions for input gene sets but may produce factually incorrect statements, commonly referred to as hallucinations in LLMs. Here we present GeneAgent, an LLM-based AI agent for gene-set analysis that reduces hallucinations by autonomously interacting with biological databases to verify its own output. Evaluation of 1,106 gene sets collected from different sources demonstrates that GeneAgent is consistently more accurate than GPT-4 by a significant margin. We further applied GeneAgent to seven novel gene sets derived from mouse B2905 melanoma cell lines. Expert review confirmed that GeneAgent produces more relevant and comprehensive functional descriptions than GPT-4, providing valuable insights into gene functions and expediting knowledge discovery. GeneAgent is a language agent using large language models and self-verification to improve gene-set function annotation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Methods
Nature Methods 生物-生化研究方法
CiteScore
58.70
自引率
1.70%
发文量
326
审稿时长
1 months
期刊介绍: Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信