黑曲霉FS054产果糖转移酶发酵工艺的优化

IF 4.9 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Yingzi Wu, Yuewen Zhang, Xiaoyu Zhong, Huiling Xia, Mingyang Zhou, Wenjin He, Yi Zheng
{"title":"黑曲霉FS054产果糖转移酶发酵工艺的优化","authors":"Yingzi Wu, Yuewen Zhang, Xiaoyu Zhong, Huiling Xia, Mingyang Zhou, Wenjin He, Yi Zheng","doi":"10.1186/s12934-025-02798-7","DOIUrl":null,"url":null,"abstract":"<p><p>This study systematically optimized the fermentation process for fructosyltransferase (FTase) production by Aspergillus niger FS054, integrating traditional experimental designs with machine learning approaches. Single-factor experiments initially identified critical medium components (carbon source, nitrogen sources, phosphate, and metal ions) and cultivation parameters (pH, liquid volume, inoculum size, temperature, and shaking speed). Subsequent Plackett-Burman screening identified sucrose, yeast extract paste, and <math> <mrow><msub><mtext>NH</mtext> <mn>4</mn></msub> <mtext>Cl</mtext></mrow> </math> as the most influential medium factors. Through Box-Behnken response surface methodology (RSM), the optimal medium composition was determined as sucrose 156.65 g/L, yeast extract paste 42 g/L, and <math> <mrow><msub><mtext>NH</mtext> <mn>4</mn></msub> <mtext>Cl</mtext></mrow> </math> 1.68 g/L, yielding an enzyme activity of 3249.00 ± 24.39 U/L (99.16% agreement with RSM predictions). Further optimization of cultivation conditions using a hybrid backpropagation neural network-genetic algorithm (BP-GA) model identified optimal parameters as pH 5.5, a liquid volume of 96.6 mL (in a 250 mL shaker), and inoculum size of 2.4 <math><mo>×</mo></math> <math><msup><mn>10</mn> <mn>4</mn></msup> </math> spores/mL, achieving a final enzyme activity of 3422.14 ± 36.86 U/L (1.1% deviation from the predicted 3460 U/L), representing a 4.2-fold increase over initial conditions. This work demonstrates the synergistic application of classical experimental design and artificial intelligence, significantly enhancing FTase productivity and potentially offering a more economical enzyme source for industrial-scale fructooligosaccharide (FOS) biosynthesis.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"24 1","pages":"173"},"PeriodicalIF":4.9000,"publicationDate":"2025-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12302737/pdf/","citationCount":"0","resultStr":"{\"title\":\"Optimization of the fermentation process for fructosyltransferase production by Aspergillus niger FS054.\",\"authors\":\"Yingzi Wu, Yuewen Zhang, Xiaoyu Zhong, Huiling Xia, Mingyang Zhou, Wenjin He, Yi Zheng\",\"doi\":\"10.1186/s12934-025-02798-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study systematically optimized the fermentation process for fructosyltransferase (FTase) production by Aspergillus niger FS054, integrating traditional experimental designs with machine learning approaches. Single-factor experiments initially identified critical medium components (carbon source, nitrogen sources, phosphate, and metal ions) and cultivation parameters (pH, liquid volume, inoculum size, temperature, and shaking speed). Subsequent Plackett-Burman screening identified sucrose, yeast extract paste, and <math> <mrow><msub><mtext>NH</mtext> <mn>4</mn></msub> <mtext>Cl</mtext></mrow> </math> as the most influential medium factors. Through Box-Behnken response surface methodology (RSM), the optimal medium composition was determined as sucrose 156.65 g/L, yeast extract paste 42 g/L, and <math> <mrow><msub><mtext>NH</mtext> <mn>4</mn></msub> <mtext>Cl</mtext></mrow> </math> 1.68 g/L, yielding an enzyme activity of 3249.00 ± 24.39 U/L (99.16% agreement with RSM predictions). Further optimization of cultivation conditions using a hybrid backpropagation neural network-genetic algorithm (BP-GA) model identified optimal parameters as pH 5.5, a liquid volume of 96.6 mL (in a 250 mL shaker), and inoculum size of 2.4 <math><mo>×</mo></math> <math><msup><mn>10</mn> <mn>4</mn></msup> </math> spores/mL, achieving a final enzyme activity of 3422.14 ± 36.86 U/L (1.1% deviation from the predicted 3460 U/L), representing a 4.2-fold increase over initial conditions. This work demonstrates the synergistic application of classical experimental design and artificial intelligence, significantly enhancing FTase productivity and potentially offering a more economical enzyme source for industrial-scale fructooligosaccharide (FOS) biosynthesis.</p>\",\"PeriodicalId\":18582,\"journal\":{\"name\":\"Microbial Cell Factories\",\"volume\":\"24 1\",\"pages\":\"173\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12302737/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Cell Factories\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12934-025-02798-7\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell Factories","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12934-025-02798-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究将传统实验设计与机器学习方法相结合,对黑曲霉FS054生产果糖转移酶(FTase)的发酵工艺进行了系统优化。单因素实验初步确定了关键培养基成分(碳源、氮源、磷酸盐和金属离子)和培养参数(pH、液体体积、接种量、温度和摇动速度)。随后的Plackett-Burman筛选确定蔗糖、酵母膏和nh4cl是影响最大的培养基因素。通过Box-Behnken响应面法(RSM)确定最佳培养基组成为蔗糖156.65 g/L,酵母膏42 g/L, nh4 Cl 1.68 g/L,酶活为3249±24.39 U/L(与RSM预测值吻合99.16%)。利用BP-GA混合反向传播神经网络-遗传算法(BP-GA)模型进一步优化培养条件,确定最优参数为pH 5.5,液量96.6 mL (250 mL摇床),接种量2.4 × 10个孢子/mL,最终酶活性为3422.14±36.86 U/L(与预测的3460 U/L偏差1.1%),比初始条件提高4.2倍。这项工作证明了经典实验设计和人工智能的协同应用,显着提高了FTase的生产力,并有可能为工业规模的低聚果糖(FOS)生物合成提供更经济的酶源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of the fermentation process for fructosyltransferase production by Aspergillus niger FS054.

This study systematically optimized the fermentation process for fructosyltransferase (FTase) production by Aspergillus niger FS054, integrating traditional experimental designs with machine learning approaches. Single-factor experiments initially identified critical medium components (carbon source, nitrogen sources, phosphate, and metal ions) and cultivation parameters (pH, liquid volume, inoculum size, temperature, and shaking speed). Subsequent Plackett-Burman screening identified sucrose, yeast extract paste, and NH 4 Cl as the most influential medium factors. Through Box-Behnken response surface methodology (RSM), the optimal medium composition was determined as sucrose 156.65 g/L, yeast extract paste 42 g/L, and NH 4 Cl 1.68 g/L, yielding an enzyme activity of 3249.00 ± 24.39 U/L (99.16% agreement with RSM predictions). Further optimization of cultivation conditions using a hybrid backpropagation neural network-genetic algorithm (BP-GA) model identified optimal parameters as pH 5.5, a liquid volume of 96.6 mL (in a 250 mL shaker), and inoculum size of 2.4 × 10 4 spores/mL, achieving a final enzyme activity of 3422.14 ± 36.86 U/L (1.1% deviation from the predicted 3460 U/L), representing a 4.2-fold increase over initial conditions. This work demonstrates the synergistic application of classical experimental design and artificial intelligence, significantly enhancing FTase productivity and potentially offering a more economical enzyme source for industrial-scale fructooligosaccharide (FOS) biosynthesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbial Cell Factories
Microbial Cell Factories 工程技术-生物工程与应用微生物
CiteScore
9.30
自引率
4.70%
发文量
235
审稿时长
2.3 months
期刊介绍: Microbial Cell Factories is an open access peer-reviewed journal that covers any topic related to the development, use and investigation of microbial cells as producers of recombinant proteins and natural products, or as catalyzers of biological transformations of industrial interest. Microbial Cell Factories is the world leading, primary research journal fully focusing on Applied Microbiology. The journal is divided into the following editorial sections: -Metabolic engineering -Synthetic biology -Whole-cell biocatalysis -Microbial regulations -Recombinant protein production/bioprocessing -Production of natural compounds -Systems biology of cell factories -Microbial production processes -Cell-free systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信