衡水湖沉积物中fragi假单胞菌hsl1 -1冷活性、耐溶剂和表面活性剂纤维素酶的纯化与表征

IF 2.1 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Chao Zhang, Jing Chen, Peixun Zhang, Jinnan Zong, Mingyu Geng, Xuying Yao, Jinxu Sun
{"title":"衡水湖沉积物中fragi假单胞菌hsl1 -1冷活性、耐溶剂和表面活性剂纤维素酶的纯化与表征","authors":"Chao Zhang, Jing Chen, Peixun Zhang, Jinnan Zong, Mingyu Geng, Xuying Yao, Jinxu Sun","doi":"10.1093/lambio/ovaf102","DOIUrl":null,"url":null,"abstract":"<p><p>Cold-active cellulases attract significant attention for their potential in energy-efficient bioprocesses under low-temperature conditions. In this study, a psychrotolerant bacterial strain, Pseudomonas fragi HsL3-1, was isolated from Hengshui Lake sediments and found to produce a novel endoglucanase, EG-22SJ. The enzyme demonstrated optimal activity at pH 5.0 and 25°C, retaining over 80% and 60% of peak activity at 15°C and 5°C, respectively, and exhibited exceptional tolerance to 20% organic solvents (e.g. n-hexane enhanced activity by 29.8%) and 1% surfactants (e.g. Tween 80). Kinetic analysis revealed high substrate affinity for CMC-Na with a Km of 0.583 mg·ml-1 and Vmax of 401 μmol·l-1·min-1. Activity was significantly activated by Ca²⁺ and Mg²⁺ but inhibited by Cu²⁺ and Hg²⁺. Culture optimization via response surface methodology increased cellulase production to 8.71 U·ml-1 under conditions of 15.24 g·l-1 CMC-Na, 20.54°C, pH 6.85, and 1.95% inoculation, yielding a 1.24-fold improvement. These integrated properties position EG-22SJ as a robust biocatalyst for sustainable low-temperature applications such as biofuel production, food processing, and detergent formulation, highlighting the potential of nonextreme environments for enzyme discovery.</p>","PeriodicalId":17962,"journal":{"name":"Letters in Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Purification and characterization of a cold-active, organic solvent-, and surfactant-tolerant cellulase from Pseudomonas fragi HsL3-1 isolated from Hengshui Lake sediments.\",\"authors\":\"Chao Zhang, Jing Chen, Peixun Zhang, Jinnan Zong, Mingyu Geng, Xuying Yao, Jinxu Sun\",\"doi\":\"10.1093/lambio/ovaf102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cold-active cellulases attract significant attention for their potential in energy-efficient bioprocesses under low-temperature conditions. In this study, a psychrotolerant bacterial strain, Pseudomonas fragi HsL3-1, was isolated from Hengshui Lake sediments and found to produce a novel endoglucanase, EG-22SJ. The enzyme demonstrated optimal activity at pH 5.0 and 25°C, retaining over 80% and 60% of peak activity at 15°C and 5°C, respectively, and exhibited exceptional tolerance to 20% organic solvents (e.g. n-hexane enhanced activity by 29.8%) and 1% surfactants (e.g. Tween 80). Kinetic analysis revealed high substrate affinity for CMC-Na with a Km of 0.583 mg·ml-1 and Vmax of 401 μmol·l-1·min-1. Activity was significantly activated by Ca²⁺ and Mg²⁺ but inhibited by Cu²⁺ and Hg²⁺. Culture optimization via response surface methodology increased cellulase production to 8.71 U·ml-1 under conditions of 15.24 g·l-1 CMC-Na, 20.54°C, pH 6.85, and 1.95% inoculation, yielding a 1.24-fold improvement. These integrated properties position EG-22SJ as a robust biocatalyst for sustainable low-temperature applications such as biofuel production, food processing, and detergent formulation, highlighting the potential of nonextreme environments for enzyme discovery.</p>\",\"PeriodicalId\":17962,\"journal\":{\"name\":\"Letters in Applied Microbiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Applied Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/lambio/ovaf102\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Applied Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/lambio/ovaf102","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

冷活性纤维素酶因其在低温条件下节能生物过程中的潜力而备受关注。本研究从衡水湖沉积物中分离到一株耐寒细菌——fragi假单胞菌HsL3-1,发现其可产生一种新型内切葡聚糖酶EG-22SJ。该酶在pH 5.0和25°C时表现出最佳活性,在15°C和5°C时分别保持峰值活性的80%和60%以上,并且对20%有机溶剂(如正己烷增强活性29.8%)和1%表面活性剂(如Tween 80)表现出优异的耐受性。动力学分析显示CMC-Na对底物有很高的亲和力,K ω = 0.583 mg·mL-1, V ω = 401 μmol·L·min⁻¹。Ca 2 +和Mg 2 +明显激活活性,Cu 2 +和Hg 2 +抑制活性。在CMC-Na浓度为15.24 g·L-1、温度为20.54℃、pH为6.85、接种量为1.95%的条件下,通过响应面法优化培养,纤维素酶产量达到8.71 U·mL-1,提高了1.24倍。这些综合特性使EG-22SJ成为可持续低温应用的强大生物催化剂,如生物燃料生产、食品加工和洗涤剂配方,突出了非极端环境对酶发现的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Purification and characterization of a cold-active, organic solvent-, and surfactant-tolerant cellulase from Pseudomonas fragi HsL3-1 isolated from Hengshui Lake sediments.

Cold-active cellulases attract significant attention for their potential in energy-efficient bioprocesses under low-temperature conditions. In this study, a psychrotolerant bacterial strain, Pseudomonas fragi HsL3-1, was isolated from Hengshui Lake sediments and found to produce a novel endoglucanase, EG-22SJ. The enzyme demonstrated optimal activity at pH 5.0 and 25°C, retaining over 80% and 60% of peak activity at 15°C and 5°C, respectively, and exhibited exceptional tolerance to 20% organic solvents (e.g. n-hexane enhanced activity by 29.8%) and 1% surfactants (e.g. Tween 80). Kinetic analysis revealed high substrate affinity for CMC-Na with a Km of 0.583 mg·ml-1 and Vmax of 401 μmol·l-1·min-1. Activity was significantly activated by Ca²⁺ and Mg²⁺ but inhibited by Cu²⁺ and Hg²⁺. Culture optimization via response surface methodology increased cellulase production to 8.71 U·ml-1 under conditions of 15.24 g·l-1 CMC-Na, 20.54°C, pH 6.85, and 1.95% inoculation, yielding a 1.24-fold improvement. These integrated properties position EG-22SJ as a robust biocatalyst for sustainable low-temperature applications such as biofuel production, food processing, and detergent formulation, highlighting the potential of nonextreme environments for enzyme discovery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Letters in Applied Microbiology
Letters in Applied Microbiology 工程技术-生物工程与应用微生物
CiteScore
4.40
自引率
4.20%
发文量
225
审稿时长
3.3 months
期刊介绍: Journal of & Letters in Applied Microbiology are two of the flagship research journals of the Society for Applied Microbiology (SfAM). For more than 75 years they have been publishing top quality research and reviews in the broad field of applied microbiology. The journals are provided to all SfAM members as well as having a global online readership totalling more than 500,000 downloads per year in more than 200 countries. Submitting authors can expect fast decision and publication times, averaging 33 days to first decision and 34 days from acceptance to online publication. There are no page charges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信