基于线场共聚焦光学相干断层扫描和共聚焦拉曼显微光谱学的人工智能辅助非黑色素瘤皮肤癌结构识别。

IF 2.9 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Journal of Biomedical Optics Pub Date : 2025-07-01 Epub Date: 2025-07-28 DOI:10.1117/1.JBO.30.7.076008
Meriem Ayadh, Léna Waszczuk, Jonas Ogien, Grégoire Dauce, Luc Augis, Sana Tfaili, Ali Tfayli, Jean-Luc Perrot, Arnaud Dubois
{"title":"基于线场共聚焦光学相干断层扫描和共聚焦拉曼显微光谱学的人工智能辅助非黑色素瘤皮肤癌结构识别。","authors":"Meriem Ayadh, Léna Waszczuk, Jonas Ogien, Grégoire Dauce, Luc Augis, Sana Tfaili, Ali Tfayli, Jean-Luc Perrot, Arnaud Dubois","doi":"10.1117/1.JBO.30.7.076008","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Morpho-chemical characterization of skin cancers provides valuable insights for early diagnosis, classification, and treatment response assessment.</p><p><strong>Aim: </strong>We introduce a compact, noninvasive system combining high-resolution morphological imaging and chemical characterization of skin tissues. The system integrates line-field confocal optical coherence tomography for cellular-level imaging and confocal Raman microspectroscopy to analyze the chemical composition of specific targets identified within the morphological images.</p><p><strong>Approach: </strong>We present results obtained from the system installed in a clinical setting over the course of 1 year. More than 330 nonmelanoma skin cancer specimens were imaged <i>ex vivo</i>, with different structures targeted for Raman microspectroscopy, resulting in over 1300 spectral acquisitions. To evaluate the system's ability to accurately identify cancerous structures, an artificial intelligence model was trained on the spectral data.</p><p><strong>Results: </strong>The model demonstrated high classification performance, achieving an area under the ROC curve of 0.95 for basal cell carcinoma structures and 0.92 when including structures from both basal and squamous cell carcinomas.</p><p><strong>Conclusions: </strong>Spectral attention scores derived from Raman data revealed key chemical differences among the various cancerous structures, offering deeper insights into their composition.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"30 7","pages":"076008"},"PeriodicalIF":2.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12302994/pdf/","citationCount":"0","resultStr":"{\"title\":\"AI-assisted identification of nonmelanoma skin cancer structures based on combined line-field confocal optical coherence tomography and confocal Raman microspectroscopy.\",\"authors\":\"Meriem Ayadh, Léna Waszczuk, Jonas Ogien, Grégoire Dauce, Luc Augis, Sana Tfaili, Ali Tfayli, Jean-Luc Perrot, Arnaud Dubois\",\"doi\":\"10.1117/1.JBO.30.7.076008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Significance: </strong>Morpho-chemical characterization of skin cancers provides valuable insights for early diagnosis, classification, and treatment response assessment.</p><p><strong>Aim: </strong>We introduce a compact, noninvasive system combining high-resolution morphological imaging and chemical characterization of skin tissues. The system integrates line-field confocal optical coherence tomography for cellular-level imaging and confocal Raman microspectroscopy to analyze the chemical composition of specific targets identified within the morphological images.</p><p><strong>Approach: </strong>We present results obtained from the system installed in a clinical setting over the course of 1 year. More than 330 nonmelanoma skin cancer specimens were imaged <i>ex vivo</i>, with different structures targeted for Raman microspectroscopy, resulting in over 1300 spectral acquisitions. To evaluate the system's ability to accurately identify cancerous structures, an artificial intelligence model was trained on the spectral data.</p><p><strong>Results: </strong>The model demonstrated high classification performance, achieving an area under the ROC curve of 0.95 for basal cell carcinoma structures and 0.92 when including structures from both basal and squamous cell carcinomas.</p><p><strong>Conclusions: </strong>Spectral attention scores derived from Raman data revealed key chemical differences among the various cancerous structures, offering deeper insights into their composition.</p>\",\"PeriodicalId\":15264,\"journal\":{\"name\":\"Journal of Biomedical Optics\",\"volume\":\"30 7\",\"pages\":\"076008\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12302994/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Optics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JBO.30.7.076008\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JBO.30.7.076008","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

意义:皮肤癌的形态化学特征为早期诊断、分类和治疗反应评估提供了有价值的见解。目的:我们介绍了一种结合高分辨率形态学成像和皮肤组织化学特征的紧凑、无创系统。该系统集成了用于细胞级成像的线场共聚焦光学相干断层扫描和共聚焦拉曼显微光谱学,以分析形态图像中识别的特定目标的化学成分。方法:我们目前的结果从系统安装在临床设置超过1年的过程。超过330例非黑色素瘤皮肤癌标本进行了离体成像,不同的结构针对拉曼显微光谱,产生了1300多个光谱采集。为了评估该系统准确识别癌症结构的能力,在光谱数据上训练了一个人工智能模型。结果:该模型表现出较高的分类性能,基底细胞癌结构的ROC曲线下面积为0.95,同时包括基底细胞癌和鳞状细胞癌结构的ROC曲线下面积为0.92。结论:来自拉曼数据的光谱注意力分数揭示了不同癌症结构之间的关键化学差异,为其组成提供了更深入的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AI-assisted identification of nonmelanoma skin cancer structures based on combined line-field confocal optical coherence tomography and confocal Raman microspectroscopy.

Significance: Morpho-chemical characterization of skin cancers provides valuable insights for early diagnosis, classification, and treatment response assessment.

Aim: We introduce a compact, noninvasive system combining high-resolution morphological imaging and chemical characterization of skin tissues. The system integrates line-field confocal optical coherence tomography for cellular-level imaging and confocal Raman microspectroscopy to analyze the chemical composition of specific targets identified within the morphological images.

Approach: We present results obtained from the system installed in a clinical setting over the course of 1 year. More than 330 nonmelanoma skin cancer specimens were imaged ex vivo, with different structures targeted for Raman microspectroscopy, resulting in over 1300 spectral acquisitions. To evaluate the system's ability to accurately identify cancerous structures, an artificial intelligence model was trained on the spectral data.

Results: The model demonstrated high classification performance, achieving an area under the ROC curve of 0.95 for basal cell carcinoma structures and 0.92 when including structures from both basal and squamous cell carcinomas.

Conclusions: Spectral attention scores derived from Raman data revealed key chemical differences among the various cancerous structures, offering deeper insights into their composition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
5.70%
发文量
263
审稿时长
2 months
期刊介绍: The Journal of Biomedical Optics publishes peer-reviewed papers on the use of modern optical technology for improved health care and biomedical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信