Suk-Jin Oh , Gaeun Lim , Yebin Han , Heetaek Kim , Yun-Gon Kim , Shashi Kant Bhatia , Yung-Hun Yang
{"title":"基于DNA核酸内切酶i - scii的铜鱼无疤痕基因组编辑系统的建立。","authors":"Suk-Jin Oh , Gaeun Lim , Yebin Han , Heetaek Kim , Yun-Gon Kim , Shashi Kant Bhatia , Yung-Hun Yang","doi":"10.1016/j.jbiotec.2025.07.020","DOIUrl":null,"url":null,"abstract":"<div><div><em>Cupriavidus necator</em> is a promising microbial chassis capable of fixing CO₂ and producing high polyhydroxyalkanoate yields. Consequently, various genetic engineering methods have been explored. While <em>sacB</em>-based homologous recombination (HR) and CRISPR-Cas9 have shown both advantages and disadvantages in <em>C. necator</em>, alternative tools, including the DNA endonuclease <em>I-SceI</em>-mediated HR system could enable precise, scarless genome editing without requiring a large database. We developed a two-plasmid-based <em>I-SceI</em> HR system for efficient gene deletion and insertion in <em>C. necator</em> by altering origin replication and induction systems. The pOUO-1 plasmid was designed for conjugation-based genome integration via first HR, whereas the pOH-4 plasmid was constructed to express <em>I-SceI</em>, inducing second HR. Unlike conventional <em>I-SceI</em> expression strategies, which fail to trigger second HR in <em>C. necator</em>, transformation with pOH-4 alone was sufficient for recombination. A plasmid-curing strategy was optimized to eliminate the highly stable pOH-4 by increasing the incubation temperature to 37°C. Using this optimized system, the <em>phaC</em><sub>1</sub> gene was successfully knocked out; the <em>phaC</em><sub>BP-M-CPF4</sub> was inserted at the same site, resulting in a novel poly(3-hydroxybutyrate-<em>co</em>-5-hydroxyvalerate)-producing strain. This newly established <em>I-SceI</em> HR technique significantly simplifies genome engineering in <em>C. necator</em>, reducing the timeframe to a few weeks and facilitating its further applications in synthetic biology.</div></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"406 ","pages":"Pages 285-295"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a DNA endonuclease I-SceI-based scarless genome editing system for Cupriavidus necator\",\"authors\":\"Suk-Jin Oh , Gaeun Lim , Yebin Han , Heetaek Kim , Yun-Gon Kim , Shashi Kant Bhatia , Yung-Hun Yang\",\"doi\":\"10.1016/j.jbiotec.2025.07.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><em>Cupriavidus necator</em> is a promising microbial chassis capable of fixing CO₂ and producing high polyhydroxyalkanoate yields. Consequently, various genetic engineering methods have been explored. While <em>sacB</em>-based homologous recombination (HR) and CRISPR-Cas9 have shown both advantages and disadvantages in <em>C. necator</em>, alternative tools, including the DNA endonuclease <em>I-SceI</em>-mediated HR system could enable precise, scarless genome editing without requiring a large database. We developed a two-plasmid-based <em>I-SceI</em> HR system for efficient gene deletion and insertion in <em>C. necator</em> by altering origin replication and induction systems. The pOUO-1 plasmid was designed for conjugation-based genome integration via first HR, whereas the pOH-4 plasmid was constructed to express <em>I-SceI</em>, inducing second HR. Unlike conventional <em>I-SceI</em> expression strategies, which fail to trigger second HR in <em>C. necator</em>, transformation with pOH-4 alone was sufficient for recombination. A plasmid-curing strategy was optimized to eliminate the highly stable pOH-4 by increasing the incubation temperature to 37°C. Using this optimized system, the <em>phaC</em><sub>1</sub> gene was successfully knocked out; the <em>phaC</em><sub>BP-M-CPF4</sub> was inserted at the same site, resulting in a novel poly(3-hydroxybutyrate-<em>co</em>-5-hydroxyvalerate)-producing strain. This newly established <em>I-SceI</em> HR technique significantly simplifies genome engineering in <em>C. necator</em>, reducing the timeframe to a few weeks and facilitating its further applications in synthetic biology.</div></div>\",\"PeriodicalId\":15153,\"journal\":{\"name\":\"Journal of biotechnology\",\"volume\":\"406 \",\"pages\":\"Pages 285-295\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168165625001919\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168165625001919","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Development of a DNA endonuclease I-SceI-based scarless genome editing system for Cupriavidus necator
Cupriavidus necator is a promising microbial chassis capable of fixing CO₂ and producing high polyhydroxyalkanoate yields. Consequently, various genetic engineering methods have been explored. While sacB-based homologous recombination (HR) and CRISPR-Cas9 have shown both advantages and disadvantages in C. necator, alternative tools, including the DNA endonuclease I-SceI-mediated HR system could enable precise, scarless genome editing without requiring a large database. We developed a two-plasmid-based I-SceI HR system for efficient gene deletion and insertion in C. necator by altering origin replication and induction systems. The pOUO-1 plasmid was designed for conjugation-based genome integration via first HR, whereas the pOH-4 plasmid was constructed to express I-SceI, inducing second HR. Unlike conventional I-SceI expression strategies, which fail to trigger second HR in C. necator, transformation with pOH-4 alone was sufficient for recombination. A plasmid-curing strategy was optimized to eliminate the highly stable pOH-4 by increasing the incubation temperature to 37°C. Using this optimized system, the phaC1 gene was successfully knocked out; the phaCBP-M-CPF4 was inserted at the same site, resulting in a novel poly(3-hydroxybutyrate-co-5-hydroxyvalerate)-producing strain. This newly established I-SceI HR technique significantly simplifies genome engineering in C. necator, reducing the timeframe to a few weeks and facilitating its further applications in synthetic biology.
期刊介绍:
The Journal of Biotechnology has an open access mirror journal, the Journal of Biotechnology: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The Journal provides a medium for the rapid publication of both full-length articles and short communications on novel and innovative aspects of biotechnology. The Journal will accept papers ranging from genetic or molecular biological positions to those covering biochemical, chemical or bioprocess engineering aspects as well as computer application of new software concepts, provided that in each case the material is directly relevant to biotechnological systems. Papers presenting information of a multidisciplinary nature that would not be suitable for publication in a journal devoted to a single discipline, are particularly welcome.