Adivhaho Khwathisi, Amidou Samie, Asfatou Ndama Traore, Ntakadzeni Edwin Madala
{"title":"通过分子网络获取数据依赖的多参数优化,以实现更全面的细菌代谢物覆盖。","authors":"Adivhaho Khwathisi, Amidou Samie, Asfatou Ndama Traore, Ntakadzeni Edwin Madala","doi":"10.1155/ijm/4388417","DOIUrl":null,"url":null,"abstract":"<p><p>Prokaryotic organisms rely on a limited array of metabolites for survival, which varies according to their natural environment. For example, soil-borne bacteria produce diverse metabolites, such as antibiotics, to thrive in their competitive surroundings, inhibiting the growth of nearby competing bacteria. The structural diversity of these compounds offers great analytical challenges, since there is no universal acquisition setting that can be applied to achieve their comprehensive coverage. Therefore, the use of a single experimental setup inevitably hinders the comprehensive metabolite coverage, which would affect the outputs. To address this, we propose employing a design of experiment (DoE) approach through the central composite design (CCD) to enhance the metabolite detection and broaden the coverage of the data-dependent acquisition (DDA) mode of the UHPLC-qTOF-MS technique. Our study reveals that altering collision energy significantly enhances metabolite coverage compared to adjusting the DDA threshold of detection. Furthermore, the ability of global natural product social (GNPS)-based molecular network models to annotate metabolites is greatly influenced by data acquisition settings, particularly affecting MS<sup>2</sup> data. Interestingly, molecular networks constructed from averaged spectral data obtained through randomly selected DDA settings outperform those generated using customized settings through DoE modeling. This study demonstrates that in untargeted LC-MS metabolomics, both collision energy and intensity threshold independently enhance metabolite coverage in untargeted metabolomics. However, their combined use results in even greater coverage. Consequently, we recommend adopting group-based optimization over single-point optimization for more comprehensive metabolite coverage and in-depth exploration. However, caution should be taken in order to balance between robust data and redundancy.</p>","PeriodicalId":14098,"journal":{"name":"International Journal of Microbiology","volume":"2025 ","pages":"4388417"},"PeriodicalIF":3.2000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12303636/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multiparametric Optimization of Data-Dependent Acquisition Towards More Holistic Bacterial Metabolite Coverage Through Molecular Networking.\",\"authors\":\"Adivhaho Khwathisi, Amidou Samie, Asfatou Ndama Traore, Ntakadzeni Edwin Madala\",\"doi\":\"10.1155/ijm/4388417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Prokaryotic organisms rely on a limited array of metabolites for survival, which varies according to their natural environment. For example, soil-borne bacteria produce diverse metabolites, such as antibiotics, to thrive in their competitive surroundings, inhibiting the growth of nearby competing bacteria. The structural diversity of these compounds offers great analytical challenges, since there is no universal acquisition setting that can be applied to achieve their comprehensive coverage. Therefore, the use of a single experimental setup inevitably hinders the comprehensive metabolite coverage, which would affect the outputs. To address this, we propose employing a design of experiment (DoE) approach through the central composite design (CCD) to enhance the metabolite detection and broaden the coverage of the data-dependent acquisition (DDA) mode of the UHPLC-qTOF-MS technique. Our study reveals that altering collision energy significantly enhances metabolite coverage compared to adjusting the DDA threshold of detection. Furthermore, the ability of global natural product social (GNPS)-based molecular network models to annotate metabolites is greatly influenced by data acquisition settings, particularly affecting MS<sup>2</sup> data. Interestingly, molecular networks constructed from averaged spectral data obtained through randomly selected DDA settings outperform those generated using customized settings through DoE modeling. This study demonstrates that in untargeted LC-MS metabolomics, both collision energy and intensity threshold independently enhance metabolite coverage in untargeted metabolomics. However, their combined use results in even greater coverage. Consequently, we recommend adopting group-based optimization over single-point optimization for more comprehensive metabolite coverage and in-depth exploration. However, caution should be taken in order to balance between robust data and redundancy.</p>\",\"PeriodicalId\":14098,\"journal\":{\"name\":\"International Journal of Microbiology\",\"volume\":\"2025 \",\"pages\":\"4388417\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12303636/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Microbiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/ijm/4388417\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/ijm/4388417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Multiparametric Optimization of Data-Dependent Acquisition Towards More Holistic Bacterial Metabolite Coverage Through Molecular Networking.
Prokaryotic organisms rely on a limited array of metabolites for survival, which varies according to their natural environment. For example, soil-borne bacteria produce diverse metabolites, such as antibiotics, to thrive in their competitive surroundings, inhibiting the growth of nearby competing bacteria. The structural diversity of these compounds offers great analytical challenges, since there is no universal acquisition setting that can be applied to achieve their comprehensive coverage. Therefore, the use of a single experimental setup inevitably hinders the comprehensive metabolite coverage, which would affect the outputs. To address this, we propose employing a design of experiment (DoE) approach through the central composite design (CCD) to enhance the metabolite detection and broaden the coverage of the data-dependent acquisition (DDA) mode of the UHPLC-qTOF-MS technique. Our study reveals that altering collision energy significantly enhances metabolite coverage compared to adjusting the DDA threshold of detection. Furthermore, the ability of global natural product social (GNPS)-based molecular network models to annotate metabolites is greatly influenced by data acquisition settings, particularly affecting MS2 data. Interestingly, molecular networks constructed from averaged spectral data obtained through randomly selected DDA settings outperform those generated using customized settings through DoE modeling. This study demonstrates that in untargeted LC-MS metabolomics, both collision energy and intensity threshold independently enhance metabolite coverage in untargeted metabolomics. However, their combined use results in even greater coverage. Consequently, we recommend adopting group-based optimization over single-point optimization for more comprehensive metabolite coverage and in-depth exploration. However, caution should be taken in order to balance between robust data and redundancy.
期刊介绍:
International Journal of Microbiology is a peer-reviewed, Open Access journal that publishes original research articles, review articles, and clinical studies on microorganisms and their interaction with hosts and the environment. The journal covers all microbes, including bacteria, fungi, viruses, archaea, and protozoa. Basic science will be considered, as well as medical and applied research.