[心脏病学随机对照试验中的人工智能:应用和未来展望]。

IF 0.7 Q4 CARDIAC & CARDIOVASCULAR SYSTEMS
Christian Basile, Alessandro Villaschi, Francesco Orso, Aldo Pietro Maggioni
{"title":"[心脏病学随机对照试验中的人工智能:应用和未来展望]。","authors":"Christian Basile, Alessandro Villaschi, Francesco Orso, Aldo Pietro Maggioni","doi":"10.1714/4531.45330","DOIUrl":null,"url":null,"abstract":"<p><p>Integrating artificial intelligence (AI) into cardiovascular clinical trials is emerging as a key factor in streamlining patient selection, data collection, endpoint monitoring, and outcome analysis. On the one hand, machine learning and deep learning algorithms facilitate the management and review of ever-increasing volumes of clinical, imaging, and telemonitoring data, identifying predictive patterns and automating repetitive tasks. On the other hand, the high cost and long duration of traditional trials, coupled with the need for adequate population diversity, underscore the urgency of re-engineering trial design. AI can contribute to more adaptive study protocols, minimize interobserver variability, and improve endpoint accuracy. However, technical and ethical challenges remain, including algorithmic bias, privacy, model interpretability, and legal accountability for errors. Looking ahead, the introduction of digital biomarkers, synthetic control arms, and increasingly decentralized trials may redefine experimental paradigms and make cardiovascular trials faster, more inclusive, and more targeted. The aim of this review is to describe the use of AI in randomized controlled trials in cardiology.</p>","PeriodicalId":12510,"journal":{"name":"Giornale italiano di cardiologia","volume":"26 8","pages":"549-558"},"PeriodicalIF":0.7000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Artificial intelligence for randomized controlled trials in cardiology: applications and future perspectives].\",\"authors\":\"Christian Basile, Alessandro Villaschi, Francesco Orso, Aldo Pietro Maggioni\",\"doi\":\"10.1714/4531.45330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Integrating artificial intelligence (AI) into cardiovascular clinical trials is emerging as a key factor in streamlining patient selection, data collection, endpoint monitoring, and outcome analysis. On the one hand, machine learning and deep learning algorithms facilitate the management and review of ever-increasing volumes of clinical, imaging, and telemonitoring data, identifying predictive patterns and automating repetitive tasks. On the other hand, the high cost and long duration of traditional trials, coupled with the need for adequate population diversity, underscore the urgency of re-engineering trial design. AI can contribute to more adaptive study protocols, minimize interobserver variability, and improve endpoint accuracy. However, technical and ethical challenges remain, including algorithmic bias, privacy, model interpretability, and legal accountability for errors. Looking ahead, the introduction of digital biomarkers, synthetic control arms, and increasingly decentralized trials may redefine experimental paradigms and make cardiovascular trials faster, more inclusive, and more targeted. The aim of this review is to describe the use of AI in randomized controlled trials in cardiology.</p>\",\"PeriodicalId\":12510,\"journal\":{\"name\":\"Giornale italiano di cardiologia\",\"volume\":\"26 8\",\"pages\":\"549-558\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Giornale italiano di cardiologia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1714/4531.45330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Giornale italiano di cardiologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1714/4531.45330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

将人工智能(AI)整合到心血管临床试验中,正在成为简化患者选择、数据收集、终点监测和结果分析的关键因素。一方面,机器学习和深度学习算法有助于管理和审查不断增加的临床、成像和远程监测数据量,识别预测模式并自动化重复任务。另一方面,传统试验成本高、持续时间长,再加上需要充分的人群多样性,强调了重新设计试验设计的紧迫性。人工智能可以促进更具适应性的研究方案,最大限度地减少观察者之间的差异,并提高终点的准确性。然而,技术和道德挑战仍然存在,包括算法偏见、隐私、模型可解释性和错误的法律责任。展望未来,数字生物标志物、合成控制臂和日益分散的试验的引入可能会重新定义实验范式,并使心血管试验更快、更具包容性和更有针对性。本综述的目的是描述人工智能在心脏病学随机对照试验中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[Artificial intelligence for randomized controlled trials in cardiology: applications and future perspectives].

Integrating artificial intelligence (AI) into cardiovascular clinical trials is emerging as a key factor in streamlining patient selection, data collection, endpoint monitoring, and outcome analysis. On the one hand, machine learning and deep learning algorithms facilitate the management and review of ever-increasing volumes of clinical, imaging, and telemonitoring data, identifying predictive patterns and automating repetitive tasks. On the other hand, the high cost and long duration of traditional trials, coupled with the need for adequate population diversity, underscore the urgency of re-engineering trial design. AI can contribute to more adaptive study protocols, minimize interobserver variability, and improve endpoint accuracy. However, technical and ethical challenges remain, including algorithmic bias, privacy, model interpretability, and legal accountability for errors. Looking ahead, the introduction of digital biomarkers, synthetic control arms, and increasingly decentralized trials may redefine experimental paradigms and make cardiovascular trials faster, more inclusive, and more targeted. The aim of this review is to describe the use of AI in randomized controlled trials in cardiology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Giornale italiano di cardiologia
Giornale italiano di cardiologia CARDIAC & CARDIOVASCULAR SYSTEMS-
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信