{"title":"施马伦伯格病毒流行病学和区域控制策略:诊断、疫苗和媒介管理。","authors":"Jing Wang, Qi Jia, Haoyu Xiang, Fang Wang, Chao Sun, Jitao Chang, Zhigang Jiang, Xin Yin","doi":"10.3389/fcimb.2025.1633030","DOIUrl":null,"url":null,"abstract":"<p><p>Schmallenberg virus (SBV) is an emerging orthobunyavirus transmitted by <i>Culicoides</i> midges. It poses a serious global health threat to ruminants, especially during pregnancy, causing abortion, stillbirths, and congenital malformations. Since its first outbreak in 2011, SBV has spread across Europe and other regions. Its transmission has expanded due to global climate change and increased animal trade, resulting in recurrent outbreaks in endemic regions and a growing risk of introduction into non-endemic areas. This situation highlights the urgent need for improved control strategies. This review summarizes the pathogenic and epidemiological characteristics of SBV and provides an overview of recent advancements in diagnostic approaches, vaccine development, and vector control. Diagnostic approaches, such as serological assays and nucleic acid-based tests, have become the primary tools for SBV detection. However, their applicability in clinical settings still requires further optimization. In terms of vaccine development, existing inactivated vaccines have limitations, including the inability to distinguish between vaccinated and infected animals. This has driven the development of next-generation vaccines, such as recombinant protein, viral vector, and mRNA-based platforms. For vector control, integrated approaches combining chemical, ecological, and biological strategies have been proposed to interrupt the transmission of the virus by <i>Culicoides</i> midges. Additionally, this review emphasizes the necessity of region-specific control strategies tailored to the differing epidemiological contexts. In endemic regions, comprehensive measures, including pathogen surveillance, vaccination programs, and <i>Culicoides</i> control, are critical. In non-endemic regions, the focus should be on enhancing border biosecurity, monitoring international trade, and establishing early warning systems. These strategies not only provide a scientific foundation for SBV control but also offer practical guidance for managing the spread of similar vector-borne viruses globally.</p>","PeriodicalId":12458,"journal":{"name":"Frontiers in Cellular and Infection Microbiology","volume":"15 ","pages":"1633030"},"PeriodicalIF":4.8000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12301392/pdf/","citationCount":"0","resultStr":"{\"title\":\"Schmallenberg virus epidemiology and regional control strategies: diagnostics, vaccines, and vector management.\",\"authors\":\"Jing Wang, Qi Jia, Haoyu Xiang, Fang Wang, Chao Sun, Jitao Chang, Zhigang Jiang, Xin Yin\",\"doi\":\"10.3389/fcimb.2025.1633030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Schmallenberg virus (SBV) is an emerging orthobunyavirus transmitted by <i>Culicoides</i> midges. It poses a serious global health threat to ruminants, especially during pregnancy, causing abortion, stillbirths, and congenital malformations. Since its first outbreak in 2011, SBV has spread across Europe and other regions. Its transmission has expanded due to global climate change and increased animal trade, resulting in recurrent outbreaks in endemic regions and a growing risk of introduction into non-endemic areas. This situation highlights the urgent need for improved control strategies. This review summarizes the pathogenic and epidemiological characteristics of SBV and provides an overview of recent advancements in diagnostic approaches, vaccine development, and vector control. Diagnostic approaches, such as serological assays and nucleic acid-based tests, have become the primary tools for SBV detection. However, their applicability in clinical settings still requires further optimization. In terms of vaccine development, existing inactivated vaccines have limitations, including the inability to distinguish between vaccinated and infected animals. This has driven the development of next-generation vaccines, such as recombinant protein, viral vector, and mRNA-based platforms. For vector control, integrated approaches combining chemical, ecological, and biological strategies have been proposed to interrupt the transmission of the virus by <i>Culicoides</i> midges. Additionally, this review emphasizes the necessity of region-specific control strategies tailored to the differing epidemiological contexts. In endemic regions, comprehensive measures, including pathogen surveillance, vaccination programs, and <i>Culicoides</i> control, are critical. In non-endemic regions, the focus should be on enhancing border biosecurity, monitoring international trade, and establishing early warning systems. These strategies not only provide a scientific foundation for SBV control but also offer practical guidance for managing the spread of similar vector-borne viruses globally.</p>\",\"PeriodicalId\":12458,\"journal\":{\"name\":\"Frontiers in Cellular and Infection Microbiology\",\"volume\":\"15 \",\"pages\":\"1633030\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12301392/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Cellular and Infection Microbiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fcimb.2025.1633030\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cellular and Infection Microbiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fcimb.2025.1633030","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Schmallenberg virus epidemiology and regional control strategies: diagnostics, vaccines, and vector management.
Schmallenberg virus (SBV) is an emerging orthobunyavirus transmitted by Culicoides midges. It poses a serious global health threat to ruminants, especially during pregnancy, causing abortion, stillbirths, and congenital malformations. Since its first outbreak in 2011, SBV has spread across Europe and other regions. Its transmission has expanded due to global climate change and increased animal trade, resulting in recurrent outbreaks in endemic regions and a growing risk of introduction into non-endemic areas. This situation highlights the urgent need for improved control strategies. This review summarizes the pathogenic and epidemiological characteristics of SBV and provides an overview of recent advancements in diagnostic approaches, vaccine development, and vector control. Diagnostic approaches, such as serological assays and nucleic acid-based tests, have become the primary tools for SBV detection. However, their applicability in clinical settings still requires further optimization. In terms of vaccine development, existing inactivated vaccines have limitations, including the inability to distinguish between vaccinated and infected animals. This has driven the development of next-generation vaccines, such as recombinant protein, viral vector, and mRNA-based platforms. For vector control, integrated approaches combining chemical, ecological, and biological strategies have been proposed to interrupt the transmission of the virus by Culicoides midges. Additionally, this review emphasizes the necessity of region-specific control strategies tailored to the differing epidemiological contexts. In endemic regions, comprehensive measures, including pathogen surveillance, vaccination programs, and Culicoides control, are critical. In non-endemic regions, the focus should be on enhancing border biosecurity, monitoring international trade, and establishing early warning systems. These strategies not only provide a scientific foundation for SBV control but also offer practical guidance for managing the spread of similar vector-borne viruses globally.
期刊介绍:
Frontiers in Cellular and Infection Microbiology is a leading specialty journal, publishing rigorously peer-reviewed research across all pathogenic microorganisms and their interaction with their hosts. Chief Editor Yousef Abu Kwaik, University of Louisville is supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
Frontiers in Cellular and Infection Microbiology includes research on bacteria, fungi, parasites, viruses, endosymbionts, prions and all microbial pathogens as well as the microbiota and its effect on health and disease in various hosts. The research approaches include molecular microbiology, cellular microbiology, gene regulation, proteomics, signal transduction, pathogenic evolution, genomics, structural biology, and virulence factors as well as model hosts. Areas of research to counteract infectious agents by the host include the host innate and adaptive immune responses as well as metabolic restrictions to various pathogenic microorganisms, vaccine design and development against various pathogenic microorganisms, and the mechanisms of antibiotic resistance and its countermeasures.