Xiaowei Huang, Zexiang Li, Zhihua Li, Jiyong Shi, Ning Zhang, Zhou Qin, Liuzi Du, Tingting Shen, Roujia Zhang
{"title":"图像计算在中式菜肴无损检测中的应用。","authors":"Xiaowei Huang, Zexiang Li, Zhihua Li, Jiyong Shi, Ning Zhang, Zhou Qin, Liuzi Du, Tingting Shen, Roujia Zhang","doi":"10.3390/foods14142488","DOIUrl":null,"url":null,"abstract":"<p><p>Food quality and safety are paramount in preserving the culinary authenticity and cultural integrity of Chinese cuisine, characterized by intricate ingredient combinations, diverse cooking techniques (e.g., stir-frying, steaming, and braising), and region-specific flavor profiles. Traditional non-destructive detection methods often struggle with the unique challenges posed by Chinese dishes, including complex textural variations in staple foods (e.g., noodles, dumplings), layered seasoning compositions (e.g., soy sauce, Sichuan peppercorns), and oil-rich cooking media. This study pioneers a hyperspectral imaging framework enhanced with domain-specific deep learning algorithms (spatial-spectral convolutional networks with attention mechanisms) to address these challenges. Our approach effectively deciphers the subtle spectral fingerprints of Chinese-specific ingredients (e.g., fermented black beans, lotus root) and quantifies critical quality indicators, achieving an average classification accuracy of 97.8% across 15 major Chinese dish categories. Specifically, the model demonstrates high precision in quantifying chili oil content in Mapo Tofu with a Mean Absolute Error (MAE) of 0.43% w/w and assessing freshness gradients in Cantonese dim sum (Shrimp Har Gow) with a classification accuracy of 95.2% for three distinct freshness levels. This approach leverages the detailed spectral information provided by hyperspectral imaging to automate the classification and detection of Chinese dishes, significantly improving both the accuracy of image-based food classification by >15 percentage points compared to traditional RGB methods and enhancing food quality safety assessment.</p>","PeriodicalId":12386,"journal":{"name":"Foods","volume":"14 14","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Image Computing in Non-Destructive Detection of Chinese Cuisine.\",\"authors\":\"Xiaowei Huang, Zexiang Li, Zhihua Li, Jiyong Shi, Ning Zhang, Zhou Qin, Liuzi Du, Tingting Shen, Roujia Zhang\",\"doi\":\"10.3390/foods14142488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Food quality and safety are paramount in preserving the culinary authenticity and cultural integrity of Chinese cuisine, characterized by intricate ingredient combinations, diverse cooking techniques (e.g., stir-frying, steaming, and braising), and region-specific flavor profiles. Traditional non-destructive detection methods often struggle with the unique challenges posed by Chinese dishes, including complex textural variations in staple foods (e.g., noodles, dumplings), layered seasoning compositions (e.g., soy sauce, Sichuan peppercorns), and oil-rich cooking media. This study pioneers a hyperspectral imaging framework enhanced with domain-specific deep learning algorithms (spatial-spectral convolutional networks with attention mechanisms) to address these challenges. Our approach effectively deciphers the subtle spectral fingerprints of Chinese-specific ingredients (e.g., fermented black beans, lotus root) and quantifies critical quality indicators, achieving an average classification accuracy of 97.8% across 15 major Chinese dish categories. Specifically, the model demonstrates high precision in quantifying chili oil content in Mapo Tofu with a Mean Absolute Error (MAE) of 0.43% w/w and assessing freshness gradients in Cantonese dim sum (Shrimp Har Gow) with a classification accuracy of 95.2% for three distinct freshness levels. This approach leverages the detailed spectral information provided by hyperspectral imaging to automate the classification and detection of Chinese dishes, significantly improving both the accuracy of image-based food classification by >15 percentage points compared to traditional RGB methods and enhancing food quality safety assessment.</p>\",\"PeriodicalId\":12386,\"journal\":{\"name\":\"Foods\",\"volume\":\"14 14\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foods\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/foods14142488\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/foods14142488","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Application of Image Computing in Non-Destructive Detection of Chinese Cuisine.
Food quality and safety are paramount in preserving the culinary authenticity and cultural integrity of Chinese cuisine, characterized by intricate ingredient combinations, diverse cooking techniques (e.g., stir-frying, steaming, and braising), and region-specific flavor profiles. Traditional non-destructive detection methods often struggle with the unique challenges posed by Chinese dishes, including complex textural variations in staple foods (e.g., noodles, dumplings), layered seasoning compositions (e.g., soy sauce, Sichuan peppercorns), and oil-rich cooking media. This study pioneers a hyperspectral imaging framework enhanced with domain-specific deep learning algorithms (spatial-spectral convolutional networks with attention mechanisms) to address these challenges. Our approach effectively deciphers the subtle spectral fingerprints of Chinese-specific ingredients (e.g., fermented black beans, lotus root) and quantifies critical quality indicators, achieving an average classification accuracy of 97.8% across 15 major Chinese dish categories. Specifically, the model demonstrates high precision in quantifying chili oil content in Mapo Tofu with a Mean Absolute Error (MAE) of 0.43% w/w and assessing freshness gradients in Cantonese dim sum (Shrimp Har Gow) with a classification accuracy of 95.2% for three distinct freshness levels. This approach leverages the detailed spectral information provided by hyperspectral imaging to automate the classification and detection of Chinese dishes, significantly improving both the accuracy of image-based food classification by >15 percentage points compared to traditional RGB methods and enhancing food quality safety assessment.
期刊介绍:
Foods (ISSN 2304-8158) is an international, peer-reviewed scientific open access journal which provides an advanced forum for studies related to all aspects of food research. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists, researchers, and other food professionals to publish their experimental and theoretical results in as much detail as possible or share their knowledge with as much readers unlimitedly as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
manuscripts regarding research proposals and research ideas will be particularly welcomed
electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material
we also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds