基于计算模拟解码薄荷醇异构体感知的分子机制。

IF 5.1 2区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Foods Pub Date : 2025-07-16 DOI:10.3390/foods14142494
Mengxue Wang, Fengge Wen, Lili Zhang, Baoguo Sun, Jianping Xie, Shihao Sun, Yuyu Zhang
{"title":"基于计算模拟解码薄荷醇异构体感知的分子机制。","authors":"Mengxue Wang, Fengge Wen, Lili Zhang, Baoguo Sun, Jianping Xie, Shihao Sun, Yuyu Zhang","doi":"10.3390/foods14142494","DOIUrl":null,"url":null,"abstract":"<p><p>The flavor characteristics, perception, and molecular mechanisms of eight menthol isomers were investigated by sensory analysis combined with computational simulations. The sensory analysis results show significant differences in the odor profiles of the different menthol isomers. Among them, L-menthol shows a pleasant, sweet, and mint-like odor with a distinct freshness and no off-flavors, whereas the remaining seven isomers were interspersed with negative odors (musty, herbal, or earthy aromas). L-menthol and D-menthol had the lowest detection thresholds of 5.166 and 4.734 mg/L, respectively. The molecular docking results of the menthol isomers with olfactory receptors (Olfr874, OR8B8, and OR8B12) indicate that hydrogen bonding and hydrophobic interactions were the key binding forces. The binding energy ranged from -7.3 to -5.1 kcal/mol. Residues His-55 (Olfr874), Thr-56 (Olfr874), Leu-55 (OR8B8), Tyr-94 (OR8B8), Thr-57 (OR8B8), Phe-199 (OR8B12), and Ser-248 (OR8B12) with high frequencies particularly contributed to the recognition of menthol isomers. These findings contribute to a deeper understanding of the olfactory perception mechanism of menthol and provide data support for the development and precise application of minty odorants.</p>","PeriodicalId":12386,"journal":{"name":"Foods","volume":"14 14","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decoding the Molecular Mechanisms of Menthol Isomer Perception Based on Computational Simulations.\",\"authors\":\"Mengxue Wang, Fengge Wen, Lili Zhang, Baoguo Sun, Jianping Xie, Shihao Sun, Yuyu Zhang\",\"doi\":\"10.3390/foods14142494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The flavor characteristics, perception, and molecular mechanisms of eight menthol isomers were investigated by sensory analysis combined with computational simulations. The sensory analysis results show significant differences in the odor profiles of the different menthol isomers. Among them, L-menthol shows a pleasant, sweet, and mint-like odor with a distinct freshness and no off-flavors, whereas the remaining seven isomers were interspersed with negative odors (musty, herbal, or earthy aromas). L-menthol and D-menthol had the lowest detection thresholds of 5.166 and 4.734 mg/L, respectively. The molecular docking results of the menthol isomers with olfactory receptors (Olfr874, OR8B8, and OR8B12) indicate that hydrogen bonding and hydrophobic interactions were the key binding forces. The binding energy ranged from -7.3 to -5.1 kcal/mol. Residues His-55 (Olfr874), Thr-56 (Olfr874), Leu-55 (OR8B8), Tyr-94 (OR8B8), Thr-57 (OR8B8), Phe-199 (OR8B12), and Ser-248 (OR8B12) with high frequencies particularly contributed to the recognition of menthol isomers. These findings contribute to a deeper understanding of the olfactory perception mechanism of menthol and provide data support for the development and precise application of minty odorants.</p>\",\"PeriodicalId\":12386,\"journal\":{\"name\":\"Foods\",\"volume\":\"14 14\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foods\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/foods14142494\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/foods14142494","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

采用感官分析与计算机模拟相结合的方法,研究了8种薄荷醇异构体的风味特征、感觉和分子机理。感官分析结果表明,不同薄荷醇异构体的气味特征存在显著差异。其中,l -薄荷醇表现出一种令人愉快的、甜美的、像薄荷一样的气味,具有明显的新鲜感,没有异味,而其余7种异构体则夹杂着负面气味(霉味、草药味或泥土味)。L-薄荷醇和d -薄荷醇的检测阈值最低,分别为5.166和4.734 mg/L。薄荷醇同分异构体与嗅觉受体(Olfr874、OR8B8和OR8B12)的分子对接结果表明,氢键和疏水相互作用是关键的结合力。结合能范围为-7.3 ~ -5.1 kcal/mol。高频残基His-55 (Olfr874)、Thr-56 (Olfr874)、Leu-55 (OR8B8)、Tyr-94 (OR8B8)、Thr-57 (OR8B8)、pheh -199 (OR8B12)和Ser-248 (OR8B12)对脑醇异构体的识别贡献特别大。这些发现有助于深入了解薄荷醇的嗅觉感知机制,为薄荷气味剂的开发和精准应用提供数据支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decoding the Molecular Mechanisms of Menthol Isomer Perception Based on Computational Simulations.

The flavor characteristics, perception, and molecular mechanisms of eight menthol isomers were investigated by sensory analysis combined with computational simulations. The sensory analysis results show significant differences in the odor profiles of the different menthol isomers. Among them, L-menthol shows a pleasant, sweet, and mint-like odor with a distinct freshness and no off-flavors, whereas the remaining seven isomers were interspersed with negative odors (musty, herbal, or earthy aromas). L-menthol and D-menthol had the lowest detection thresholds of 5.166 and 4.734 mg/L, respectively. The molecular docking results of the menthol isomers with olfactory receptors (Olfr874, OR8B8, and OR8B12) indicate that hydrogen bonding and hydrophobic interactions were the key binding forces. The binding energy ranged from -7.3 to -5.1 kcal/mol. Residues His-55 (Olfr874), Thr-56 (Olfr874), Leu-55 (OR8B8), Tyr-94 (OR8B8), Thr-57 (OR8B8), Phe-199 (OR8B12), and Ser-248 (OR8B12) with high frequencies particularly contributed to the recognition of menthol isomers. These findings contribute to a deeper understanding of the olfactory perception mechanism of menthol and provide data support for the development and precise application of minty odorants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Foods
Foods Immunology and Microbiology-Microbiology
CiteScore
7.40
自引率
15.40%
发文量
3516
审稿时长
15.83 days
期刊介绍: Foods (ISSN 2304-8158) is an international, peer-reviewed scientific open access journal which provides an advanced forum for studies related to all aspects of food research. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists, researchers, and other food professionals to publish their experimental and theoretical results in as much detail as possible or share their knowledge with as much readers unlimitedly as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal: Ÿ manuscripts regarding research proposals and research ideas will be particularly welcomed Ÿ electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material Ÿ we also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信