平均动脉压是机器学习模型中预测平均动脉压所需要的。

IF 6.8 2区 医学 Q1 ANESTHESIOLOGY
Thomas Tschoellitsch, Sophie Kaltenleithner, Alexander Maletzky, Philipp Moser, Philipp Seidl, Carl Böck, Stefan Thumfart, Michael Giretzlehner, Sepp Hochreiter, Jens Meier
{"title":"平均动脉压是机器学习模型中预测平均动脉压所需要的。","authors":"Thomas Tschoellitsch, Sophie Kaltenleithner, Alexander Maletzky, Philipp Moser, Philipp Seidl, Carl Böck, Stefan Thumfart, Michael Giretzlehner, Sepp Hochreiter, Jens Meier","doi":"10.1097/EJA.0000000000002238","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Anaesthesiology and intensive care use monitoring to identify patients in danger of deterioration. Traditionally, trends and early warning scores allow clinicians to predict deterioration with moderate reliability. Reduced mean arterial blood pressure has been associated with complications, and models have been sought to predict its value. Machine learning methods with complex inputs have been used for predictive monitoring in hospital care.</p><p><strong>Objectives: </strong>This study evaluates whether machine learning can predict mean arterial pressure (MAP) from previous values.</p><p><strong>Design: </strong>This is a monocentre, retrospective, exploratory, observational cohort study using the MIMIC-III-WDB, VitalDB and an internal study centre dataset, training machine learning models on adult patients with invasively measured blood pressure (IBP) as input during an observation window up to 20 min before the prediction horizon (5 to 20 min).</p><p><strong>Setting: </strong>Kepler University Hospital, Linz, Austria.</p><p><strong>Participants: </strong>Two thousand three hundred and forty-six patients from the internal dataset, 4741 patients from MIMIC-III-WDB and 3357 patients from VitalDB were analysed.</p><p><strong>Main outcome measures: </strong>The primary endpoint was model performance in predicting whether MAP would fall below 65 mmHg in a given time frame. In a secondary analysis, we restricted the input set to stable patients with current MAP above 65 mmHg.</p><p><strong>Results: </strong>Models using the complete training data achieved receiver operating characteristic area under the curves (ROC AUCs) of 0.963, 0.946, 0.934 and 0.923 on the internal dataset for 5, 10, 15 and 20 min of prediction horizon, respectively, and 0.856, 0.837, 0.821 and 0.804 in the secondary analysis. The maximum difference of ROC AUC to baseline measurement (ROC AUC of last measured MAP as trivial estimator) was 0.006 for the complete training data and 0.051 for stable patients. The prediction of MAP may allow clinicians to intervene in time before MAP deterioration becomes clinically relevant.</p><p><strong>Conclusion: </strong>Predicting MAP below 65 mmHg within 5, 10, 15 and 20 min for patients with and without a MAP above 65 mmHg is possible and requires only MAP as input for machine learning models.</p><p><strong>Trial registration: </strong>ClinicalTrials.gov (NCT05471193).</p>","PeriodicalId":11920,"journal":{"name":"European Journal of Anaesthesiology","volume":" ","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mean arterial pressure is all you need in a machine learning model for mean arterial pressure prediction.\",\"authors\":\"Thomas Tschoellitsch, Sophie Kaltenleithner, Alexander Maletzky, Philipp Moser, Philipp Seidl, Carl Böck, Stefan Thumfart, Michael Giretzlehner, Sepp Hochreiter, Jens Meier\",\"doi\":\"10.1097/EJA.0000000000002238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Anaesthesiology and intensive care use monitoring to identify patients in danger of deterioration. Traditionally, trends and early warning scores allow clinicians to predict deterioration with moderate reliability. Reduced mean arterial blood pressure has been associated with complications, and models have been sought to predict its value. Machine learning methods with complex inputs have been used for predictive monitoring in hospital care.</p><p><strong>Objectives: </strong>This study evaluates whether machine learning can predict mean arterial pressure (MAP) from previous values.</p><p><strong>Design: </strong>This is a monocentre, retrospective, exploratory, observational cohort study using the MIMIC-III-WDB, VitalDB and an internal study centre dataset, training machine learning models on adult patients with invasively measured blood pressure (IBP) as input during an observation window up to 20 min before the prediction horizon (5 to 20 min).</p><p><strong>Setting: </strong>Kepler University Hospital, Linz, Austria.</p><p><strong>Participants: </strong>Two thousand three hundred and forty-six patients from the internal dataset, 4741 patients from MIMIC-III-WDB and 3357 patients from VitalDB were analysed.</p><p><strong>Main outcome measures: </strong>The primary endpoint was model performance in predicting whether MAP would fall below 65 mmHg in a given time frame. In a secondary analysis, we restricted the input set to stable patients with current MAP above 65 mmHg.</p><p><strong>Results: </strong>Models using the complete training data achieved receiver operating characteristic area under the curves (ROC AUCs) of 0.963, 0.946, 0.934 and 0.923 on the internal dataset for 5, 10, 15 and 20 min of prediction horizon, respectively, and 0.856, 0.837, 0.821 and 0.804 in the secondary analysis. The maximum difference of ROC AUC to baseline measurement (ROC AUC of last measured MAP as trivial estimator) was 0.006 for the complete training data and 0.051 for stable patients. The prediction of MAP may allow clinicians to intervene in time before MAP deterioration becomes clinically relevant.</p><p><strong>Conclusion: </strong>Predicting MAP below 65 mmHg within 5, 10, 15 and 20 min for patients with and without a MAP above 65 mmHg is possible and requires only MAP as input for machine learning models.</p><p><strong>Trial registration: </strong>ClinicalTrials.gov (NCT05471193).</p>\",\"PeriodicalId\":11920,\"journal\":{\"name\":\"European Journal of Anaesthesiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Anaesthesiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/EJA.0000000000002238\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ANESTHESIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Anaesthesiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/EJA.0000000000002238","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANESTHESIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:麻醉学和重症监护使用监测来识别有恶化危险的患者。传统上,趋势和早期预警评分使临床医生能够以中等可靠性预测病情恶化。降低的平均动脉血压与并发症有关,并且已经寻求模型来预测其价值。具有复杂输入的机器学习方法已被用于医院护理的预测监测。目的:本研究评估机器学习是否可以从先前的值预测平均动脉压(MAP)。设计:这是一项单中心、回顾性、探索性、观察性队列研究,使用MIMIC-III-WDB、VitalDB和一个内部研究中心数据集,在预测期前20分钟(5 - 20分钟)的观察窗口内,对具有侵入性测量血压(IBP)的成年患者进行机器学习模型训练。地点:奥地利林茨开普勒大学医院。参与者:分析了来自内部数据集的2,346例患者,来自MIMIC-III-WDB的4741例患者和来自VitalDB的3357例患者。主要结局指标:主要终点是预测MAP是否在给定时间内降至65 mmHg以下的模型性能。在二次分析中,我们将输入组限制为当前MAP高于65 mmHg的稳定患者。结果:使用完整训练数据的模型在5、10、15、20 min预测时段内,内部数据集的受试者工作特征曲线下面积(ROC auc)分别为0.963、0.946、0.934、0.923;二次分析的受试者工作特征曲线下面积(ROC auc)分别为0.856、0.837、0.821、0.804。完整训练数据的ROC AUC与基线测量值的最大差异(最后一次测量MAP的ROC AUC作为平凡估计)为0.006,稳定患者为0.051。MAP的预测可以让临床医生在MAP恶化成为临床相关之前及时干预。结论:预测MAP高于65 mmHg的患者在5、10、15和20分钟内MAP低于65 mmHg是可能的,并且只需要MAP作为机器学习模型的输入。试验注册:ClinicalTrials.gov (NCT05471193)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mean arterial pressure is all you need in a machine learning model for mean arterial pressure prediction.

Background: Anaesthesiology and intensive care use monitoring to identify patients in danger of deterioration. Traditionally, trends and early warning scores allow clinicians to predict deterioration with moderate reliability. Reduced mean arterial blood pressure has been associated with complications, and models have been sought to predict its value. Machine learning methods with complex inputs have been used for predictive monitoring in hospital care.

Objectives: This study evaluates whether machine learning can predict mean arterial pressure (MAP) from previous values.

Design: This is a monocentre, retrospective, exploratory, observational cohort study using the MIMIC-III-WDB, VitalDB and an internal study centre dataset, training machine learning models on adult patients with invasively measured blood pressure (IBP) as input during an observation window up to 20 min before the prediction horizon (5 to 20 min).

Setting: Kepler University Hospital, Linz, Austria.

Participants: Two thousand three hundred and forty-six patients from the internal dataset, 4741 patients from MIMIC-III-WDB and 3357 patients from VitalDB were analysed.

Main outcome measures: The primary endpoint was model performance in predicting whether MAP would fall below 65 mmHg in a given time frame. In a secondary analysis, we restricted the input set to stable patients with current MAP above 65 mmHg.

Results: Models using the complete training data achieved receiver operating characteristic area under the curves (ROC AUCs) of 0.963, 0.946, 0.934 and 0.923 on the internal dataset for 5, 10, 15 and 20 min of prediction horizon, respectively, and 0.856, 0.837, 0.821 and 0.804 in the secondary analysis. The maximum difference of ROC AUC to baseline measurement (ROC AUC of last measured MAP as trivial estimator) was 0.006 for the complete training data and 0.051 for stable patients. The prediction of MAP may allow clinicians to intervene in time before MAP deterioration becomes clinically relevant.

Conclusion: Predicting MAP below 65 mmHg within 5, 10, 15 and 20 min for patients with and without a MAP above 65 mmHg is possible and requires only MAP as input for machine learning models.

Trial registration: ClinicalTrials.gov (NCT05471193).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.90
自引率
11.10%
发文量
351
审稿时长
6-12 weeks
期刊介绍: The European Journal of Anaesthesiology (EJA) publishes original work of high scientific quality in the field of anaesthesiology, pain, emergency medicine and intensive care. Preference is given to experimental work or clinical observation in man, and to laboratory work of clinical relevance. The journal also publishes commissioned reviews by an authority, editorials, invited commentaries, special articles, pro and con debates, and short reports (correspondences, case reports, short reports of clinical studies).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信