一种用于假新闻检测的多模态语义增强注意网络。

IF 2 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-07-12 DOI:10.3390/e27070746
Weijie Chen, Yuzhuo Dang, Xin Zhang
{"title":"一种用于假新闻检测的多模态语义增强注意网络。","authors":"Weijie Chen, Yuzhuo Dang, Xin Zhang","doi":"10.3390/e27070746","DOIUrl":null,"url":null,"abstract":"<p><p>The proliferation of social media platforms has triggered an unprecedented increase in multimodal fake news, creating pressing challenges for content authenticity verification. Current fake news detection systems predominantly rely on isolated unimodal analysis (text or image), failing to exploit critical cross-modal correlations or leverage latent social context cues. To bridge this gap, we introduce the SCCN (<b>S</b>emantic-enhanced <b>C</b>ross-modal <b>C</b>o-attention <b>N</b>etwork), a novel framework that synergistically combines multimodal features with refined social graph signals. Our approach innovatively combines text, image, and social relation features through a hierarchical fusion framework. First, we extract modality-specific features and enhance semantics by identifying entities in both text and visual data. Second, an improved co-attention mechanism selectively integrates social relations while removing irrelevant connections to reduce noise and exploring latent informative links. Finally, the model is optimized via cross-entropy loss with entropy minimization. Experimental results for benchmark datasets (PHEME and Weibo) show that SCCN consistently outperforms existing approaches, achieving relative accuracy enhancements of 1.7% and 1.6% over the best-performing baseline methods in each dataset.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 7","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12294598/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Multimodal Semantic-Enhanced Attention Network for Fake News Detection.\",\"authors\":\"Weijie Chen, Yuzhuo Dang, Xin Zhang\",\"doi\":\"10.3390/e27070746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The proliferation of social media platforms has triggered an unprecedented increase in multimodal fake news, creating pressing challenges for content authenticity verification. Current fake news detection systems predominantly rely on isolated unimodal analysis (text or image), failing to exploit critical cross-modal correlations or leverage latent social context cues. To bridge this gap, we introduce the SCCN (<b>S</b>emantic-enhanced <b>C</b>ross-modal <b>C</b>o-attention <b>N</b>etwork), a novel framework that synergistically combines multimodal features with refined social graph signals. Our approach innovatively combines text, image, and social relation features through a hierarchical fusion framework. First, we extract modality-specific features and enhance semantics by identifying entities in both text and visual data. Second, an improved co-attention mechanism selectively integrates social relations while removing irrelevant connections to reduce noise and exploring latent informative links. Finally, the model is optimized via cross-entropy loss with entropy minimization. Experimental results for benchmark datasets (PHEME and Weibo) show that SCCN consistently outperforms existing approaches, achieving relative accuracy enhancements of 1.7% and 1.6% over the best-performing baseline methods in each dataset.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"27 7\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12294598/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e27070746\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27070746","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

社交媒体平台的激增引发了多模式假新闻的前所未有的增长,给内容真实性验证带来了紧迫的挑战。目前的假新闻检测系统主要依赖于孤立的单模态分析(文本或图像),未能利用关键的跨模态相关性或利用潜在的社会背景线索。为了弥补这一差距,我们引入了SCCN(语义增强的跨模态共同注意网络),这是一个将多模态特征与精炼的社交图信号协同结合的新框架。我们的方法通过层次融合框架创新地将文本、图像和社会关系特征结合在一起。首先,我们提取特定于模态的特征,并通过识别文本和视觉数据中的实体来增强语义。其次,改进的共同注意机制选择性地整合社会关系,同时去除不相关的联系,以减少噪音,挖掘潜在的信息联系。最后,利用熵最小化交叉熵损失对模型进行优化。在基准数据集(PHEME和微博)上的实验结果表明,SCCN始终优于现有的方法,在每个数据集上,SCCN的相对准确率比表现最好的基线方法分别提高了1.7%和1.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Multimodal Semantic-Enhanced Attention Network for Fake News Detection.

The proliferation of social media platforms has triggered an unprecedented increase in multimodal fake news, creating pressing challenges for content authenticity verification. Current fake news detection systems predominantly rely on isolated unimodal analysis (text or image), failing to exploit critical cross-modal correlations or leverage latent social context cues. To bridge this gap, we introduce the SCCN (Semantic-enhanced Cross-modal Co-attention Network), a novel framework that synergistically combines multimodal features with refined social graph signals. Our approach innovatively combines text, image, and social relation features through a hierarchical fusion framework. First, we extract modality-specific features and enhance semantics by identifying entities in both text and visual data. Second, an improved co-attention mechanism selectively integrates social relations while removing irrelevant connections to reduce noise and exploring latent informative links. Finally, the model is optimized via cross-entropy loss with entropy minimization. Experimental results for benchmark datasets (PHEME and Weibo) show that SCCN consistently outperforms existing approaches, achieving relative accuracy enhancements of 1.7% and 1.6% over the best-performing baseline methods in each dataset.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信