{"title":"一种用于假新闻检测的多模态语义增强注意网络。","authors":"Weijie Chen, Yuzhuo Dang, Xin Zhang","doi":"10.3390/e27070746","DOIUrl":null,"url":null,"abstract":"<p><p>The proliferation of social media platforms has triggered an unprecedented increase in multimodal fake news, creating pressing challenges for content authenticity verification. Current fake news detection systems predominantly rely on isolated unimodal analysis (text or image), failing to exploit critical cross-modal correlations or leverage latent social context cues. To bridge this gap, we introduce the SCCN (<b>S</b>emantic-enhanced <b>C</b>ross-modal <b>C</b>o-attention <b>N</b>etwork), a novel framework that synergistically combines multimodal features with refined social graph signals. Our approach innovatively combines text, image, and social relation features through a hierarchical fusion framework. First, we extract modality-specific features and enhance semantics by identifying entities in both text and visual data. Second, an improved co-attention mechanism selectively integrates social relations while removing irrelevant connections to reduce noise and exploring latent informative links. Finally, the model is optimized via cross-entropy loss with entropy minimization. Experimental results for benchmark datasets (PHEME and Weibo) show that SCCN consistently outperforms existing approaches, achieving relative accuracy enhancements of 1.7% and 1.6% over the best-performing baseline methods in each dataset.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 7","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12294598/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Multimodal Semantic-Enhanced Attention Network for Fake News Detection.\",\"authors\":\"Weijie Chen, Yuzhuo Dang, Xin Zhang\",\"doi\":\"10.3390/e27070746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The proliferation of social media platforms has triggered an unprecedented increase in multimodal fake news, creating pressing challenges for content authenticity verification. Current fake news detection systems predominantly rely on isolated unimodal analysis (text or image), failing to exploit critical cross-modal correlations or leverage latent social context cues. To bridge this gap, we introduce the SCCN (<b>S</b>emantic-enhanced <b>C</b>ross-modal <b>C</b>o-attention <b>N</b>etwork), a novel framework that synergistically combines multimodal features with refined social graph signals. Our approach innovatively combines text, image, and social relation features through a hierarchical fusion framework. First, we extract modality-specific features and enhance semantics by identifying entities in both text and visual data. Second, an improved co-attention mechanism selectively integrates social relations while removing irrelevant connections to reduce noise and exploring latent informative links. Finally, the model is optimized via cross-entropy loss with entropy minimization. Experimental results for benchmark datasets (PHEME and Weibo) show that SCCN consistently outperforms existing approaches, achieving relative accuracy enhancements of 1.7% and 1.6% over the best-performing baseline methods in each dataset.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"27 7\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12294598/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e27070746\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27070746","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
A Multimodal Semantic-Enhanced Attention Network for Fake News Detection.
The proliferation of social media platforms has triggered an unprecedented increase in multimodal fake news, creating pressing challenges for content authenticity verification. Current fake news detection systems predominantly rely on isolated unimodal analysis (text or image), failing to exploit critical cross-modal correlations or leverage latent social context cues. To bridge this gap, we introduce the SCCN (Semantic-enhanced Cross-modal Co-attention Network), a novel framework that synergistically combines multimodal features with refined social graph signals. Our approach innovatively combines text, image, and social relation features through a hierarchical fusion framework. First, we extract modality-specific features and enhance semantics by identifying entities in both text and visual data. Second, an improved co-attention mechanism selectively integrates social relations while removing irrelevant connections to reduce noise and exploring latent informative links. Finally, the model is optimized via cross-entropy loss with entropy minimization. Experimental results for benchmark datasets (PHEME and Weibo) show that SCCN consistently outperforms existing approaches, achieving relative accuracy enhancements of 1.7% and 1.6% over the best-performing baseline methods in each dataset.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.