Óscar Navarrete-Aliaga, María Muriach, Juana Maria Delgado-Saborit
{"title":"空气污染物对使用气液界面系统的人体气道细胞模型的毒理学影响:系统综述。","authors":"Óscar Navarrete-Aliaga, María Muriach, Juana Maria Delgado-Saborit","doi":"10.1007/s40572-025-00491-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>Global air pollution has increased significantly in recent decades mainly due to anthropogenic emissions. This results in elevated concentrations of some airborne pollutants like nitrogen dioxide, ozone, volatile organic compounds (VOCs), and particulate matter (PM). In this review, we aim to provide an overview of the current state of knowledge on the toxicological effects of air pollution on airway epithelial cells, the first point of contact of the air pollutants with the body, using air-liquid interface (ALI) models.</p><p><strong>Recent findings: </strong>Research on the health effects of air pollution has advanced through studies that take a multidisciplinary approach integrating toxicology, epidemiology, and molecular and cell biology. Submerged cell cultures have been used in most studies for the assessment of air pollution toxicity in vitro, but these show some important limitations. Thus, human airway cellular models based on ALI systems have emerged as very promising approaches in respiratory toxicology due to their closer resemblance to in vivo conditions. Results from 53 studies indicate that both, acute and prolonged exposures to air pollution induce oxidative, inflammatory, and genotoxic responses in airway epithelial cells. The changes in several biomarkers and genes related to the observed health effects were discussed through key molecular pathways, and particularly those related to the oxidative stress state. Lastly, we identified perspectives for future research in this field, such as the use of more complex test (e.g., photochemical ageing) atmospheres and exposure models that are reliable for long-term and repeated exposures. This review highlights the role of ALI cellular models as essential tools in respiratory toxicology and environmental health research, providing insights into the molecular mechanisms triggered by air pollution exposure.</p>","PeriodicalId":10775,"journal":{"name":"Current Environmental Health Reports","volume":"12 1","pages":"26"},"PeriodicalIF":9.1000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12304069/pdf/","citationCount":"0","resultStr":"{\"title\":\"Toxicological Effects of Air Pollutants on Human Airway Cell Models Using Air-liquid Interface Systems: A Systematic Review.\",\"authors\":\"Óscar Navarrete-Aliaga, María Muriach, Juana Maria Delgado-Saborit\",\"doi\":\"10.1007/s40572-025-00491-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose of review: </strong>Global air pollution has increased significantly in recent decades mainly due to anthropogenic emissions. This results in elevated concentrations of some airborne pollutants like nitrogen dioxide, ozone, volatile organic compounds (VOCs), and particulate matter (PM). In this review, we aim to provide an overview of the current state of knowledge on the toxicological effects of air pollution on airway epithelial cells, the first point of contact of the air pollutants with the body, using air-liquid interface (ALI) models.</p><p><strong>Recent findings: </strong>Research on the health effects of air pollution has advanced through studies that take a multidisciplinary approach integrating toxicology, epidemiology, and molecular and cell biology. Submerged cell cultures have been used in most studies for the assessment of air pollution toxicity in vitro, but these show some important limitations. Thus, human airway cellular models based on ALI systems have emerged as very promising approaches in respiratory toxicology due to their closer resemblance to in vivo conditions. Results from 53 studies indicate that both, acute and prolonged exposures to air pollution induce oxidative, inflammatory, and genotoxic responses in airway epithelial cells. The changes in several biomarkers and genes related to the observed health effects were discussed through key molecular pathways, and particularly those related to the oxidative stress state. Lastly, we identified perspectives for future research in this field, such as the use of more complex test (e.g., photochemical ageing) atmospheres and exposure models that are reliable for long-term and repeated exposures. This review highlights the role of ALI cellular models as essential tools in respiratory toxicology and environmental health research, providing insights into the molecular mechanisms triggered by air pollution exposure.</p>\",\"PeriodicalId\":10775,\"journal\":{\"name\":\"Current Environmental Health Reports\",\"volume\":\"12 1\",\"pages\":\"26\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12304069/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Environmental Health Reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s40572-025-00491-w\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Environmental Health Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s40572-025-00491-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
Toxicological Effects of Air Pollutants on Human Airway Cell Models Using Air-liquid Interface Systems: A Systematic Review.
Purpose of review: Global air pollution has increased significantly in recent decades mainly due to anthropogenic emissions. This results in elevated concentrations of some airborne pollutants like nitrogen dioxide, ozone, volatile organic compounds (VOCs), and particulate matter (PM). In this review, we aim to provide an overview of the current state of knowledge on the toxicological effects of air pollution on airway epithelial cells, the first point of contact of the air pollutants with the body, using air-liquid interface (ALI) models.
Recent findings: Research on the health effects of air pollution has advanced through studies that take a multidisciplinary approach integrating toxicology, epidemiology, and molecular and cell biology. Submerged cell cultures have been used in most studies for the assessment of air pollution toxicity in vitro, but these show some important limitations. Thus, human airway cellular models based on ALI systems have emerged as very promising approaches in respiratory toxicology due to their closer resemblance to in vivo conditions. Results from 53 studies indicate that both, acute and prolonged exposures to air pollution induce oxidative, inflammatory, and genotoxic responses in airway epithelial cells. The changes in several biomarkers and genes related to the observed health effects were discussed through key molecular pathways, and particularly those related to the oxidative stress state. Lastly, we identified perspectives for future research in this field, such as the use of more complex test (e.g., photochemical ageing) atmospheres and exposure models that are reliable for long-term and repeated exposures. This review highlights the role of ALI cellular models as essential tools in respiratory toxicology and environmental health research, providing insights into the molecular mechanisms triggered by air pollution exposure.
期刊介绍:
Current Environmental Health Reports provides up-to-date expert reviews in environmental health. The goal is to evaluate and synthesize original research in all disciplines relevant for environmental health sciences, including basic research, clinical research, epidemiology, and environmental policy.