Jann H Ungerer, Alessia Pally, Stefano Bosco, Artem Kononov, Deepankar Sarmah, Sebastian Lehmann, Claes Thelander, Ville F Maisi, Pasquale Scarlino, Daniel Loss, Andreas Baumgartner, Christian Schönenberger
{"title":"增强偶极耦合的减相甜点。","authors":"Jann H Ungerer, Alessia Pally, Stefano Bosco, Artem Kononov, Deepankar Sarmah, Sebastian Lehmann, Claes Thelander, Ville F Maisi, Pasquale Scarlino, Daniel Loss, Andreas Baumgartner, Christian Schönenberger","doi":"10.1038/s42005-025-02216-9","DOIUrl":null,"url":null,"abstract":"<p><p>Two-level systems (TLSs) are the basic units of quantum computers but face a trade-off between operation speed and coherence due to shared coupling paths. Here, we investigate a TLS given by a singlet-triplet (ST+) transition. We identify a magnetic-field configuration that maximizes dipole coupling while minimizing total dephasing, forming a compromise-free sweet spot that mitigates this fundamental trade-off. The TLS is implemented in a crystal-phase-defined double-quantum dot in an InAs nanowire. Using a superconducting resonator, we measure the spin-orbit interaction (SOI) gap, the spin-photon coupling strength, and the total TLS dephasing rate as a function of the in-plane magnetic-field orientation. Our theoretical description postulates phonons as the dominant noise source. The compromise-free sweet spot originates from the SOI, suggesting that it is not restricted to this material platform but might find applications in any material with SOI. These findings pave the way for enhanced nanomaterial engineering for next-generation qubit technologies.</p>","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":"8 1","pages":"306"},"PeriodicalIF":5.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12286847/pdf/","citationCount":"0","resultStr":"{\"title\":\"A dephasing sweet spot with enhanced dipolar coupling.\",\"authors\":\"Jann H Ungerer, Alessia Pally, Stefano Bosco, Artem Kononov, Deepankar Sarmah, Sebastian Lehmann, Claes Thelander, Ville F Maisi, Pasquale Scarlino, Daniel Loss, Andreas Baumgartner, Christian Schönenberger\",\"doi\":\"10.1038/s42005-025-02216-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Two-level systems (TLSs) are the basic units of quantum computers but face a trade-off between operation speed and coherence due to shared coupling paths. Here, we investigate a TLS given by a singlet-triplet (ST+) transition. We identify a magnetic-field configuration that maximizes dipole coupling while minimizing total dephasing, forming a compromise-free sweet spot that mitigates this fundamental trade-off. The TLS is implemented in a crystal-phase-defined double-quantum dot in an InAs nanowire. Using a superconducting resonator, we measure the spin-orbit interaction (SOI) gap, the spin-photon coupling strength, and the total TLS dephasing rate as a function of the in-plane magnetic-field orientation. Our theoretical description postulates phonons as the dominant noise source. The compromise-free sweet spot originates from the SOI, suggesting that it is not restricted to this material platform but might find applications in any material with SOI. These findings pave the way for enhanced nanomaterial engineering for next-generation qubit technologies.</p>\",\"PeriodicalId\":10540,\"journal\":{\"name\":\"Communications Physics\",\"volume\":\"8 1\",\"pages\":\"306\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12286847/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s42005-025-02216-9\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s42005-025-02216-9","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
A dephasing sweet spot with enhanced dipolar coupling.
Two-level systems (TLSs) are the basic units of quantum computers but face a trade-off between operation speed and coherence due to shared coupling paths. Here, we investigate a TLS given by a singlet-triplet (ST+) transition. We identify a magnetic-field configuration that maximizes dipole coupling while minimizing total dephasing, forming a compromise-free sweet spot that mitigates this fundamental trade-off. The TLS is implemented in a crystal-phase-defined double-quantum dot in an InAs nanowire. Using a superconducting resonator, we measure the spin-orbit interaction (SOI) gap, the spin-photon coupling strength, and the total TLS dephasing rate as a function of the in-plane magnetic-field orientation. Our theoretical description postulates phonons as the dominant noise source. The compromise-free sweet spot originates from the SOI, suggesting that it is not restricted to this material platform but might find applications in any material with SOI. These findings pave the way for enhanced nanomaterial engineering for next-generation qubit technologies.
期刊介绍:
Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline.
The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.