人参根系微生物群落及代谢产物对氮素添加的响应。

IF 4.8 2区 生物学 Q1 PLANT SCIENCES
Kexin Li, Mingming Wan, Mei Han, Limin Yang
{"title":"人参根系微生物群落及代谢产物对氮素添加的响应。","authors":"Kexin Li, Mingming Wan, Mei Han, Limin Yang","doi":"10.1186/s12870-025-07031-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Nitrogen availability plays a pivotal role in shaping the composition of root-associated microbial consortia in plants. Nevertheless, elucidating the mechanisms by which nitrogen availability regulates microbial populations and their metabolic activities across different root-associated ecological niches requires further investigation. This research employed an integrative approach combining microbiological approaches with non-targeted metabolomic analyses to examine nitrogen-mediated variations in microbial communities and metabolic processes within ginseng root systems. High-throughput sequencing alongside UPLC-MS/MS analytical platforms was utilized to conduct this multidimensional investigation.</p><p><strong>Results: </strong>Our findings reveal that ginseng treated with N1 exhibited significantly increased yield by 29.90% compared to N0 and by 38.05% compared to N2 (p < 0.05). Additionally, nitrogen application markedly reduced the diversity of microbial communities within various segments of the root system, including rhizosphere soil (RS), rhizoplane soil (TS), fibrous roots (F), and phloem (P). Concurrently, there was a shift in bacterial communities from oligotrophic to eutrophic groups, with specific enrichment of groups such as Rhodanobacter and Burkholderia-Caballeronia-Paraburkholderia, which play crucial roles in the nitrogen cycling process. Metabolomic profiling revealed substantial modifications in soil metabolite profiles under nitrogen treatment, with marked alterations detected across 11 critical biochemical pathways encompassing plant-derived secondary metabolite biosynthesis and environmental microbial metabolic processes. Correlation analysis further indicated that the yield of ginseng and total ginsenoside content in F consistently varied in conjunction with soil nitrate nitrogen (NO₃⁻-N) content in the RS. Additionally, m-cresol was found to play a pivotal role in inhibiting the pathogenic fungus Alternaria, actively responding to pH fluctuations and promoting the synthesis of total ginsenosides in ginseng.</p><p><strong>Conclusion: </strong>These insights elucidate the complex interplay between nitrogen levels and both microbial and metabolomic dynamics, providing a foundational understanding for the strategic manipulation of microbial communities to enhance the sustainability of ginseng agriculture.</p>","PeriodicalId":9198,"journal":{"name":"BMC Plant Biology","volume":"25 1","pages":"969"},"PeriodicalIF":4.8000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The response of Panax ginseng root microbial communities and metabolites to nitrogen addition.\",\"authors\":\"Kexin Li, Mingming Wan, Mei Han, Limin Yang\",\"doi\":\"10.1186/s12870-025-07031-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Nitrogen availability plays a pivotal role in shaping the composition of root-associated microbial consortia in plants. Nevertheless, elucidating the mechanisms by which nitrogen availability regulates microbial populations and their metabolic activities across different root-associated ecological niches requires further investigation. This research employed an integrative approach combining microbiological approaches with non-targeted metabolomic analyses to examine nitrogen-mediated variations in microbial communities and metabolic processes within ginseng root systems. High-throughput sequencing alongside UPLC-MS/MS analytical platforms was utilized to conduct this multidimensional investigation.</p><p><strong>Results: </strong>Our findings reveal that ginseng treated with N1 exhibited significantly increased yield by 29.90% compared to N0 and by 38.05% compared to N2 (p < 0.05). Additionally, nitrogen application markedly reduced the diversity of microbial communities within various segments of the root system, including rhizosphere soil (RS), rhizoplane soil (TS), fibrous roots (F), and phloem (P). Concurrently, there was a shift in bacterial communities from oligotrophic to eutrophic groups, with specific enrichment of groups such as Rhodanobacter and Burkholderia-Caballeronia-Paraburkholderia, which play crucial roles in the nitrogen cycling process. Metabolomic profiling revealed substantial modifications in soil metabolite profiles under nitrogen treatment, with marked alterations detected across 11 critical biochemical pathways encompassing plant-derived secondary metabolite biosynthesis and environmental microbial metabolic processes. Correlation analysis further indicated that the yield of ginseng and total ginsenoside content in F consistently varied in conjunction with soil nitrate nitrogen (NO₃⁻-N) content in the RS. Additionally, m-cresol was found to play a pivotal role in inhibiting the pathogenic fungus Alternaria, actively responding to pH fluctuations and promoting the synthesis of total ginsenosides in ginseng.</p><p><strong>Conclusion: </strong>These insights elucidate the complex interplay between nitrogen levels and both microbial and metabolomic dynamics, providing a foundational understanding for the strategic manipulation of microbial communities to enhance the sustainability of ginseng agriculture.</p>\",\"PeriodicalId\":9198,\"journal\":{\"name\":\"BMC Plant Biology\",\"volume\":\"25 1\",\"pages\":\"969\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Plant Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12870-025-07031-6\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12870-025-07031-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

背景:氮素有效性在植物根相关微生物群落组成的形成中起着关键作用。然而,阐明氮有效性调节微生物种群及其在不同根相关生态位中的代谢活动的机制需要进一步的研究。本研究采用微生物学方法与非靶向代谢组学分析相结合的综合方法来研究人参根系中微生物群落和代谢过程中氮介导的变化。利用高通量测序和UPLC-MS/MS分析平台进行这一多维调查。结果:N1处理的人参产量比N0处理的人参产量显著提高29.90%,比N2处理的人参产量显著提高38.05% (p)。结论:这些发现阐明了氮水平与微生物和代谢组动力学之间的复杂相互作用,为策略性地操纵微生物群落以提高人参农业的可持续性提供了基础认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The response of Panax ginseng root microbial communities and metabolites to nitrogen addition.

Background: Nitrogen availability plays a pivotal role in shaping the composition of root-associated microbial consortia in plants. Nevertheless, elucidating the mechanisms by which nitrogen availability regulates microbial populations and their metabolic activities across different root-associated ecological niches requires further investigation. This research employed an integrative approach combining microbiological approaches with non-targeted metabolomic analyses to examine nitrogen-mediated variations in microbial communities and metabolic processes within ginseng root systems. High-throughput sequencing alongside UPLC-MS/MS analytical platforms was utilized to conduct this multidimensional investigation.

Results: Our findings reveal that ginseng treated with N1 exhibited significantly increased yield by 29.90% compared to N0 and by 38.05% compared to N2 (p < 0.05). Additionally, nitrogen application markedly reduced the diversity of microbial communities within various segments of the root system, including rhizosphere soil (RS), rhizoplane soil (TS), fibrous roots (F), and phloem (P). Concurrently, there was a shift in bacterial communities from oligotrophic to eutrophic groups, with specific enrichment of groups such as Rhodanobacter and Burkholderia-Caballeronia-Paraburkholderia, which play crucial roles in the nitrogen cycling process. Metabolomic profiling revealed substantial modifications in soil metabolite profiles under nitrogen treatment, with marked alterations detected across 11 critical biochemical pathways encompassing plant-derived secondary metabolite biosynthesis and environmental microbial metabolic processes. Correlation analysis further indicated that the yield of ginseng and total ginsenoside content in F consistently varied in conjunction with soil nitrate nitrogen (NO₃⁻-N) content in the RS. Additionally, m-cresol was found to play a pivotal role in inhibiting the pathogenic fungus Alternaria, actively responding to pH fluctuations and promoting the synthesis of total ginsenosides in ginseng.

Conclusion: These insights elucidate the complex interplay between nitrogen levels and both microbial and metabolomic dynamics, providing a foundational understanding for the strategic manipulation of microbial communities to enhance the sustainability of ginseng agriculture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Plant Biology
BMC Plant Biology 生物-植物科学
CiteScore
8.40
自引率
3.80%
发文量
539
审稿时长
3.8 months
期刊介绍: BMC Plant Biology is an open access, peer-reviewed journal that considers articles on all aspects of plant biology, including molecular, cellular, tissue, organ and whole organism research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信