{"title":"转录偶联核苷酸切除修复:更快的解决方案还是唯一的选择?","authors":"Andriy Khobta, Leen Sarmini","doi":"10.3390/biom15071026","DOIUrl":null,"url":null,"abstract":"<p><p>A branch of the nucleotide excision repair (NER) pathway, transcription-coupled repair (TCR or TC-NER) specifically operates on the template DNA strand of actively transcribed genes. Initiated by stalling of elongating RNA polymerase complexes at damaged sites, TC-NER has historically been viewed as \"accelerated repair\", arguably necessary for the maintenance of vital transcription function. Conversely, the conventional \"global genome\" (GG-NER) mechanism, operating throughout the genome, is usually regarded as a much slower process, even though it has long been found that differences in repair kinetics between transcribed DNA and the rest of the genome are not manifested for all structural types of DNA damage. Considering that damage detection is the rate-limiting step of overall repair reactions in most cases and that the mechanisms of the initial recognition of modified DNA structure are fundamentally different between TC-NER and GG-NER, it is suggestive to attribute the observed kinetic differences to different damage spectra recognized by the two pathways. This review summarizes current knowledge on the differential requirements of TC-NER and GG-NER towards specific damage types, based on their structural rather than spatial characteristics, and highlights some common features of DNA modifications repaired preferentially or exclusively by TC-NER, while evading other repair mechanisms.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 7","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12293044/pdf/","citationCount":"0","resultStr":"{\"title\":\"Transcription-Coupled Nucleotide Excision Repair: A Faster Solution or the Only Option?\",\"authors\":\"Andriy Khobta, Leen Sarmini\",\"doi\":\"10.3390/biom15071026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A branch of the nucleotide excision repair (NER) pathway, transcription-coupled repair (TCR or TC-NER) specifically operates on the template DNA strand of actively transcribed genes. Initiated by stalling of elongating RNA polymerase complexes at damaged sites, TC-NER has historically been viewed as \\\"accelerated repair\\\", arguably necessary for the maintenance of vital transcription function. Conversely, the conventional \\\"global genome\\\" (GG-NER) mechanism, operating throughout the genome, is usually regarded as a much slower process, even though it has long been found that differences in repair kinetics between transcribed DNA and the rest of the genome are not manifested for all structural types of DNA damage. Considering that damage detection is the rate-limiting step of overall repair reactions in most cases and that the mechanisms of the initial recognition of modified DNA structure are fundamentally different between TC-NER and GG-NER, it is suggestive to attribute the observed kinetic differences to different damage spectra recognized by the two pathways. This review summarizes current knowledge on the differential requirements of TC-NER and GG-NER towards specific damage types, based on their structural rather than spatial characteristics, and highlights some common features of DNA modifications repaired preferentially or exclusively by TC-NER, while evading other repair mechanisms.</p>\",\"PeriodicalId\":8943,\"journal\":{\"name\":\"Biomolecules\",\"volume\":\"15 7\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12293044/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecules\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/biom15071026\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15071026","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Transcription-Coupled Nucleotide Excision Repair: A Faster Solution or the Only Option?
A branch of the nucleotide excision repair (NER) pathway, transcription-coupled repair (TCR or TC-NER) specifically operates on the template DNA strand of actively transcribed genes. Initiated by stalling of elongating RNA polymerase complexes at damaged sites, TC-NER has historically been viewed as "accelerated repair", arguably necessary for the maintenance of vital transcription function. Conversely, the conventional "global genome" (GG-NER) mechanism, operating throughout the genome, is usually regarded as a much slower process, even though it has long been found that differences in repair kinetics between transcribed DNA and the rest of the genome are not manifested for all structural types of DNA damage. Considering that damage detection is the rate-limiting step of overall repair reactions in most cases and that the mechanisms of the initial recognition of modified DNA structure are fundamentally different between TC-NER and GG-NER, it is suggestive to attribute the observed kinetic differences to different damage spectra recognized by the two pathways. This review summarizes current knowledge on the differential requirements of TC-NER and GG-NER towards specific damage types, based on their structural rather than spatial characteristics, and highlights some common features of DNA modifications repaired preferentially or exclusively by TC-NER, while evading other repair mechanisms.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.