{"title":"五指山猪心脏和肝脏脂质代谢的关系。","authors":"Yuwei Ren, Feng Wang, Ruiping Sun, Xinli Zheng, Yanning Lin, Zhe Chao","doi":"10.3390/biom15071024","DOIUrl":null,"url":null,"abstract":"<p><p>Lipid metabolism is critical for the physiological activities of signal transduction, metabolic regulation, and energy provision, and Wuzhishan (WZS) pigs are a promising animal model for studying human diseases. However, lipid metabolites in the heart and liver of WZS pigs are indistinct. In this study, we detected gene expression, blood biochemical parameters, and metabolic profiles of hearts and livers of WZS and Large White (LW) pigs, and analyzed correlations between metabolites. The results showed that the fatty acid metabolic process was present in both the heart and liver, and was more dominant in the liver. Although the expression of lipid absorption-related genes of <i>CYP7A1</i> increased in the liver, <i>CEBPB</i> levels increased in both the liver and heart; the fatty acid beta-oxidation genes <i>RXRA</i> and <i>ACSS2</i> also showed increased expression. The quantity of metabolites related to lipid synthesis decreased in the liver, heart, and blood for WZS pigs compared to that of LW pigs, indicating a balance of lipid synthesis and breakdown for WZS pigs. Moreover, the lipid metabolites in the liver and heart exhibited strong correlations with each other and showed similar correlations to blood biochemical parameters, respectively. This study declared the balance of lipid metabolism in both the heart and liver, and identified their connections for WZS pigs.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 7","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12292529/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Connection Between Lipid Metabolism in the Heart and Liver of Wuzhishan Pigs.\",\"authors\":\"Yuwei Ren, Feng Wang, Ruiping Sun, Xinli Zheng, Yanning Lin, Zhe Chao\",\"doi\":\"10.3390/biom15071024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lipid metabolism is critical for the physiological activities of signal transduction, metabolic regulation, and energy provision, and Wuzhishan (WZS) pigs are a promising animal model for studying human diseases. However, lipid metabolites in the heart and liver of WZS pigs are indistinct. In this study, we detected gene expression, blood biochemical parameters, and metabolic profiles of hearts and livers of WZS and Large White (LW) pigs, and analyzed correlations between metabolites. The results showed that the fatty acid metabolic process was present in both the heart and liver, and was more dominant in the liver. Although the expression of lipid absorption-related genes of <i>CYP7A1</i> increased in the liver, <i>CEBPB</i> levels increased in both the liver and heart; the fatty acid beta-oxidation genes <i>RXRA</i> and <i>ACSS2</i> also showed increased expression. The quantity of metabolites related to lipid synthesis decreased in the liver, heart, and blood for WZS pigs compared to that of LW pigs, indicating a balance of lipid synthesis and breakdown for WZS pigs. Moreover, the lipid metabolites in the liver and heart exhibited strong correlations with each other and showed similar correlations to blood biochemical parameters, respectively. This study declared the balance of lipid metabolism in both the heart and liver, and identified their connections for WZS pigs.</p>\",\"PeriodicalId\":8943,\"journal\":{\"name\":\"Biomolecules\",\"volume\":\"15 7\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12292529/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecules\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/biom15071024\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15071024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The Connection Between Lipid Metabolism in the Heart and Liver of Wuzhishan Pigs.
Lipid metabolism is critical for the physiological activities of signal transduction, metabolic regulation, and energy provision, and Wuzhishan (WZS) pigs are a promising animal model for studying human diseases. However, lipid metabolites in the heart and liver of WZS pigs are indistinct. In this study, we detected gene expression, blood biochemical parameters, and metabolic profiles of hearts and livers of WZS and Large White (LW) pigs, and analyzed correlations between metabolites. The results showed that the fatty acid metabolic process was present in both the heart and liver, and was more dominant in the liver. Although the expression of lipid absorption-related genes of CYP7A1 increased in the liver, CEBPB levels increased in both the liver and heart; the fatty acid beta-oxidation genes RXRA and ACSS2 also showed increased expression. The quantity of metabolites related to lipid synthesis decreased in the liver, heart, and blood for WZS pigs compared to that of LW pigs, indicating a balance of lipid synthesis and breakdown for WZS pigs. Moreover, the lipid metabolites in the liver and heart exhibited strong correlations with each other and showed similar correlations to blood biochemical parameters, respectively. This study declared the balance of lipid metabolism in both the heart and liver, and identified their connections for WZS pigs.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.