静止的多元宇宙。

IF 4.8 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biomolecules Pub Date : 2025-07-04 DOI:10.3390/biom15070960
Damien Laporte, Isabelle Sagot
{"title":"静止的多元宇宙。","authors":"Damien Laporte, Isabelle Sagot","doi":"10.3390/biom15070960","DOIUrl":null,"url":null,"abstract":"<p><p>Cellular quiescence is operationally defined as a temporary and reversible cessation of proliferation. This state encompasses a wide range of physiological situations since most cells, from microbes to cells composing complex tissues, spend most of their lives non-dividing, waiting for signals to reproliferate. As such, individual quiescent cells must withstand the effects of time not only to survive but also to maintain their ability to divide. These capacities are shaped by a combination of deterministic factors relying on cell history and cumulative stochastic events linked to the environment but also to time. In addition, with time, quiescence deepens, the quiescence exit process being extended. Yet, this deepening is not necessarily sensed evenly by each individual quiescent cell, and some cells exit quiescence faster than others. Hence, time generates heterogeneity within quiescent cell populations, heterogeneity that, in turn, increases cell population resilience and robustness to time. In this review, we discuss some of the loops that link quiescence and time.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 7","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12292838/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quiescence Multiverse.\",\"authors\":\"Damien Laporte, Isabelle Sagot\",\"doi\":\"10.3390/biom15070960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cellular quiescence is operationally defined as a temporary and reversible cessation of proliferation. This state encompasses a wide range of physiological situations since most cells, from microbes to cells composing complex tissues, spend most of their lives non-dividing, waiting for signals to reproliferate. As such, individual quiescent cells must withstand the effects of time not only to survive but also to maintain their ability to divide. These capacities are shaped by a combination of deterministic factors relying on cell history and cumulative stochastic events linked to the environment but also to time. In addition, with time, quiescence deepens, the quiescence exit process being extended. Yet, this deepening is not necessarily sensed evenly by each individual quiescent cell, and some cells exit quiescence faster than others. Hence, time generates heterogeneity within quiescent cell populations, heterogeneity that, in turn, increases cell population resilience and robustness to time. In this review, we discuss some of the loops that link quiescence and time.</p>\",\"PeriodicalId\":8943,\"journal\":{\"name\":\"Biomolecules\",\"volume\":\"15 7\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12292838/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecules\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/biom15070960\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15070960","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

细胞静止在操作上被定义为暂时和可逆的停止增殖。这种状态包含了广泛的生理情况,因为大多数细胞,从微生物到构成复杂组织的细胞,大部分时间都不分裂,等待信号再增殖。因此,单个静止细胞必须经受住时间的影响,这不仅是为了生存,也是为了保持它们分裂的能力。这些能力是由依赖于细胞历史的确定性因素和与环境和时间相关的累积随机事件的组合形成的。此外,随着时间的推移,静止加深,静止退出过程被延长。然而,这种加深不一定被每个静息细胞均匀地感知,而且一些细胞比其他细胞更快地退出静息。因此,时间在静止细胞群体中产生异质性,这种异质性反过来又增加了细胞群体对时间的弹性和稳健性。在这篇综述中,我们讨论了一些连接静止和时间的环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quiescence Multiverse.

Cellular quiescence is operationally defined as a temporary and reversible cessation of proliferation. This state encompasses a wide range of physiological situations since most cells, from microbes to cells composing complex tissues, spend most of their lives non-dividing, waiting for signals to reproliferate. As such, individual quiescent cells must withstand the effects of time not only to survive but also to maintain their ability to divide. These capacities are shaped by a combination of deterministic factors relying on cell history and cumulative stochastic events linked to the environment but also to time. In addition, with time, quiescence deepens, the quiescence exit process being extended. Yet, this deepening is not necessarily sensed evenly by each individual quiescent cell, and some cells exit quiescence faster than others. Hence, time generates heterogeneity within quiescent cell populations, heterogeneity that, in turn, increases cell population resilience and robustness to time. In this review, we discuss some of the loops that link quiescence and time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomolecules
Biomolecules Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍: Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications.  Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信